计算二重积分∫∫xydxdy,区域D由曲线y=根号(1-x^2),x^2+(y-1)^2=1与y轴所围区域的右上方部分.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 04:58:29
计算二重积分∫∫xydxdy,区域D由曲线y=根号(1-x^2),x^2+(y-1)^2=1与y轴所围区域的右上方部分.
此题可化为极坐标求
曲线y=√(1-x^2),x^2+(y-1)^2=1的交点坐标为(√3/2,1/2)
画出所围成区域:
y=√(1-x^2)部分化为极坐标方程为r=1,θ∈(π/6,π/2)
x^2+(y-1)^2=1部分化为极坐标方程为:r=2sinθ ,θ∈(0,π/6)
对所围成区域分为两部分积分:
∫∫xydxdy
=∫∫r^2cosθsinθrdrdθ
=∫(0→π/6)cosθsinθdθ∫(0→2sinθ)r^3dr+∫(π/6→π/2)cosθsinθdθ∫(0→1)r^3dr
=4∫(0→π/6)(sinθ)^5dsinθ+(1/4)∫(π/6→π/2)sinθdsinθ
=1/96+3/32
=5/48
当然此题也可以不用化为极坐标,直接用直角坐标求
确定两圆在第一象限的交点为(√3/2,1/2):
∫∫xydxdy
=∫(0→√3/2)xdx ∫(1-√1-x^2→√1-x^2) ydy
=5/48
相比来说,似乎用直角坐标更简单一些!
以上答案仅供参考,
曲线y=√(1-x^2),x^2+(y-1)^2=1的交点坐标为(√3/2,1/2)
画出所围成区域:
y=√(1-x^2)部分化为极坐标方程为r=1,θ∈(π/6,π/2)
x^2+(y-1)^2=1部分化为极坐标方程为:r=2sinθ ,θ∈(0,π/6)
对所围成区域分为两部分积分:
∫∫xydxdy
=∫∫r^2cosθsinθrdrdθ
=∫(0→π/6)cosθsinθdθ∫(0→2sinθ)r^3dr+∫(π/6→π/2)cosθsinθdθ∫(0→1)r^3dr
=4∫(0→π/6)(sinθ)^5dsinθ+(1/4)∫(π/6→π/2)sinθdsinθ
=1/96+3/32
=5/48
当然此题也可以不用化为极坐标,直接用直角坐标求
确定两圆在第一象限的交点为(√3/2,1/2):
∫∫xydxdy
=∫(0→√3/2)xdx ∫(1-√1-x^2→√1-x^2) ydy
=5/48
相比来说,似乎用直角坐标更简单一些!
以上答案仅供参考,
计算二重积分∫∫xydxdy ,其中积分区域 D是由y=x ,y=1 ,和x=2 所围成的三角 形域.D
计算给定区域的二重积分 ∫∫2xydxdy,D由y=x²+1 y=2x和x=0所围成
请教:计算二重积分∫∫xydxdy,其中D是由x-y=0,x=1及x轴所围成区域
计算二重积分xydxdy其中D是由曲线xy=1,x+y=5/2所围成
∫∫(y/x)^2dxdy,D为曲线y=1/x,y=x,y=2所围成的区域计算二重积分
计算积分∫∫ √y^2-xydxdy,其中D是由直线y=1,y=x,x=0围成的闭区域
已知二重积分区域D由直线y=x,圆x^2+y^2=2y,以及y轴围成,求二重积分∫∫xydxdy
算一个高数题目计算∫∫xydxdy,其中D由y=根号x,x+y=2,y=0围成的平面区域我这么化简的∫(下界0上界1)d
计算二重积分D∫∫xydσ,D是由直线y=1,X=2及y=x所围成的闭区域,
计算二重积分∫∫ydxdy,其中D是由直线x=-2,y=0,y=2及曲线x=-√根号(2y-y^2)所围成的区域.
计算二重积分∫∫xydσ 其中D是由曲线y=x 2及直线x=1,y=0轴围成的闭区域
计算二重积分∫∫e^y^2dσ,其中D:y=x及y=2x,y=1所围成的闭区域