(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 11:13:10
(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,
求证:阴影部分四边形OFCG的面积是△ABC的面积的
1 |
3 |
证明:(1)如图1,连接OA,OC;
∵△ABC是等边三角形,
∴AC=BC,
∵点O是等边三角形ABC的外心,
∴CF=CG=
1
2AC,∠OFC=∠OGC=90°,
∴在Rt△OFC和Rt△OGC中,
CF=CG
OC=OC,
∴Rt△OFC≌Rt△OGC.
同理:Rt△OGC≌Rt△OGA.
∴Rt△OFC≌Rt△OGC≌Rt△OGA,
S四边形OFCG=2S△OFC=S△OAC,
∴S△OAC=
1
3S△ABC,
∴S四边形OFCG=
1
3S△ABC.
(2)证法一:
连接OA,OB和OC,则
△AOC≌△COB≌△BOA,∠1=∠2;
设OD交BC于点F,OE交AC于点G,
∠AOC=∠3+∠4=120°,∠DOE=∠5+∠4=120°,
∴∠3=∠5;
在△OAG和△OCF中
∠2=∠1
OA=OC
∠3=∠5,
∴△OAG≌△OCF,
∴S△OAG=S△OCF,
∴S△OAG+S△OGC=S△OCF+S△OGC,
即S四边形OFCG=S△OAC=
1
3S△ABC;
证法二:
设OD交BC于点F,OE交AC于点G;
作OH⊥BC,OK⊥AC,垂足分别为H、K;
在四边形HOKC中,∠OHC=∠OKC=90°,∠C=60°,
∴∠HOK=360°-90°-90°-60°=120°,
即∠1+∠2=120度;
又∵∠GOF=∠2+∠3=120°,
∴∠1=∠3,
∵AC=BC,
∴OH=OK,
∴△OGK≌△OFH,
∴S四边形OFCG=S四边形OHCK=
1
3S△ABC.
∵△ABC是等边三角形,
∴AC=BC,
∵点O是等边三角形ABC的外心,
∴CF=CG=
1
2AC,∠OFC=∠OGC=90°,
∴在Rt△OFC和Rt△OGC中,
CF=CG
OC=OC,
∴Rt△OFC≌Rt△OGC.
同理:Rt△OGC≌Rt△OGA.
∴Rt△OFC≌Rt△OGC≌Rt△OGA,
S四边形OFCG=2S△OFC=S△OAC,
∴S△OAC=
1
3S△ABC,
∴S四边形OFCG=
1
3S△ABC.
(2)证法一:
连接OA,OB和OC,则
△AOC≌△COB≌△BOA,∠1=∠2;
设OD交BC于点F,OE交AC于点G,
∠AOC=∠3+∠4=120°,∠DOE=∠5+∠4=120°,
∴∠3=∠5;
在△OAG和△OCF中
∠2=∠1
OA=OC
∠3=∠5,
∴△OAG≌△OCF,
∴S△OAG=S△OCF,
∴S△OAG+S△OGC=S△OCF+S△OGC,
即S四边形OFCG=S△OAC=
1
3S△ABC;
证法二:
设OD交BC于点F,OE交AC于点G;
作OH⊥BC,OK⊥AC,垂足分别为H、K;
在四边形HOKC中,∠OHC=∠OKC=90°,∠C=60°,
∴∠HOK=360°-90°-90°-60°=120°,
即∠1+∠2=120度;
又∵∠GOF=∠2+∠3=120°,
∴∠1=∠3,
∵AC=BC,
∴OH=OK,
∴△OGK≌△OFH,
∴S四边形OFCG=S四边形OHCK=
1
3S△ABC.
如图所示,圆内接ΔABC中,AB=BC=AC,OD,OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,
如图,半圆O的直径AB=10.OD//弦BC交弦AC于点D,OD=3.(1)求弦AC的长(2)若OE⊥AB交AC于点E,
已知,如图在△ABC中,∠B,∠C的平分线相交于点O,OD⊥AB,OE⊥BC,OF⊥AC,D,E,F分别是垂足.求证:点
如图,△ABC中,∠ACB=90°,∠BAC,ABC的平分线相交于点O,OD⊥AC,OE⊥BC,垂足分别为D、E,求证四
如图,△ABC为圆O的内接三角形,O为圆心,OD垂直AB于D点,OE⊥AC于E点,若DE=4,求BC的长
如图,在△ABC中,∠ABC和∠BAC的角平分线交于点O,OD⊥BC,OE⊥AC,OF⊥AB,垂足分别为D、E、F.连接
1如图,等边三角形ABC中,O是三角形内任意一点,OD‖BC,OE‖AC,OF‖AB,求证:OD+OE+OF=BC.
如图,△ABC的角A,B,C所对边分别为a,b,c,点O是△ABC的外心,OD⊥BC于E,OE⊥AC于E,OF⊥AB于F
已知三角形ABC的高BD、CE交与点O,OD=OE,AO的延长线交BC于F.求证:AB=AC
如图,在△ABC中,∠B=90度,点O为△ABC三条角平分线的交点,OD⊥BC,OE⊥AB,OF⊥AC,点D,E,F分别
如图,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD:OE:OF=( )
已知:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.