作业帮 > 数学 > 作业

(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 11:13:10


(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,
求证:阴影部分四边形OFCG的面积是△ABC的面积的
1
3
(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影
证明:(1)如图1,连接OA,OC;
∵△ABC是等边三角形,
∴AC=BC,
∵点O是等边三角形ABC的外心,
∴CF=CG=
1
2AC,∠OFC=∠OGC=90°,
∴在Rt△OFC和Rt△OGC中,

CF=CG
OC=OC,
∴Rt△OFC≌Rt△OGC.
同理:Rt△OGC≌Rt△OGA.
∴Rt△OFC≌Rt△OGC≌Rt△OGA,
S四边形OFCG=2S△OFC=S△OAC
∴S△OAC=
1
3S△ABC
∴S四边形OFCG=
1
3S△ABC
(2)证法一:
连接OA,OB和OC,则
△AOC≌△COB≌△BOA,∠1=∠2;
设OD交BC于点F,OE交AC于点G,
∠AOC=∠3+∠4=120°,∠DOE=∠5+∠4=120°,
∴∠3=∠5;
在△OAG和△OCF中

∠2=∠1
OA=OC
∠3=∠5,
∴△OAG≌△OCF,
∴S△OAG=S△OCF
∴S△OAG+S△OGC=S△OCF+S△OGC
即S四边形OFCG=S△OAC=
1
3S△ABC
证法二:
设OD交BC于点F,OE交AC于点G;
作OH⊥BC,OK⊥AC,垂足分别为H、K;
在四边形HOKC中,∠OHC=∠OKC=90°,∠C=60°,
∴∠HOK=360°-90°-90°-60°=120°,
即∠1+∠2=120度;
又∵∠GOF=∠2+∠3=120°,
∴∠1=∠3,
∵AC=BC,
∴OH=OK,
∴△OGK≌△OFH,
∴S四边形OFCG=S四边形OHCK=
1
3S△ABC