设集合M是由两个整数的平方差构成,关于集合M,你还能得到一些什么样的结论?(除了任意奇数与M的关系之外)
设集合M是由两个整数的平方差构成,关于集合M,你还能得到一些什么样的结论?(除了任意奇数与M的关系之外)
设A是两个整数平方差的集合,即A=m²-n²,m,n∈Z
一道高一集合证明题把可以表示成两整数平方之和的全体整数记作集合M,是证明集合M的任意两个元素的乘积仍属于集合M.
把可以表示成两个整数的平方之和的全体整数记作集合M,试证明集合M任意两个元素的乘积仍属于M
设所有可表示为两整数的平方差的整数组成集合M,给出下列命题:1、所有奇数都属于M.2、若2K属于M,
设集合M={x/x=3m+1,m是整数},N={y/y=3n+2,n是整数},若a,b是正整数,则ab与集合M,N的关系
设集合A={x|x=m^2+n^2,m,n in Z}即集合A是由所有能够写成两个整数的平方和的整数的集合.求证:若s,
设集合M,N是两个非空集合,定义M与N的差为M-N={x|x∈M且x不∈N},若M-N=M,则集合M,N应满足的关系是_
设A是两个整数平方差的集合,即A{X |X=m^2-n^2,m,n∈z} 证明:若s,t∈A,t≠0,则s/t=p^2-
设A是两个整数平方差的集合,即A{X |X=m^2-n^2,m,n∈z}证明;若S,t∈A,则st∈A
设可表示为两整数的平方车的整数的集合为M
设A={x l x=m2-n2,m,n∈Z},问8,9,10与集合A有什么关系?并证明你的结论.