作业帮 > 数学 > 作业

数列(Xn)满足Xn+1=[Xn-Xn-1],X1=1 X2=a(a不等于0 a为实数)当{Xn}周期最小时(周期为正整

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 10:18:16
数列(Xn)满足Xn+1=[Xn-Xn-1],X1=1 X2=a(a不等于0 a为实数)当{Xn}周期最小时(周期为正整数)前2010项和?
数列(Xn)满足Xn+1=[Xn-Xn-1],X1=1 X2=a(a不等于0 a为实数)当{Xn}周期最小时(周期为正整
答案:0
X1=1
X2=a
X3=a-1
X4=[X3-X2]=[(a-1)-a]=-1
X5=[X4-X3]=[-1-a+1]=-a
X6=[X5-X4]=[-a+1]=1-a
X7=[X6-X5]=1-a+a=1
X8=[X7-X6]=1-1+a=a
.
.
.
由以上可算得
周期为1,2,3,4,5都不行
所以周期最小为6
又因为X1+X2+X3+X4+X5+X6=0
2010/6=335 为整数
所以前2010项和为0