一个数列不等式的题数列Bn=1/n求证(1+b1)(1+b3)(1+b5).(1+b2n-1)>根号2n+1
一个数列不等式的题数列Bn=1/n求证(1+b1)(1+b3)(1+b5).(1+b2n-1)>根号2n+1
已知数列an=n(n+1),bn=(n+1)^2,求证1/(a1+b1)+1/(a2+b2)+1/(a3+b3)+……+
在数列{an}中,an+Sn=n2+2n-1,n属于N* 令bn=an*(1/2)的n-1次方,证:b1+b2+b3+.
已知数列{an},an=2n-1,{an}和{bn}满足等式an=b1/2+b2/2平方+b3/2三次方+.bn/2的n
已知数列an=3的n-1次方,bn为等差数列,且a1+b1,a2+b2,a3+b3成等比,求数列bn的通项
已知数列an的通项公式为an=3^n-1,在等差数列bn中,bn>0(n属于n*),且b1+b2+b3=15
数列{an}满足an=n(n+1)^2,是否存在等差数列{bn}使an=1*b1+2*b2+3*b3+...n*bn,对
数列{an}中a1=1 a(n+1)=2Sn + 1等差数列{bn}中bn大于0 b1+b2+b3=15且a1+b1,a
已知数列{an}成等差,数列{bn}满足bn=(1/2)的an次方,且b1+b2+b3=21/8,b1*b2*b3=1/
已知数列{an},如果数列{bn}满足b1=a1,bn=an+a(n-1)则称数列{bn}是数列{an}的生成数列
若数列bn满足b1=2,且bn+1=bn+2^n+n,求数列bn的通项公式.
已知数列an的前n项和Sn=3n^2+5n 数列bn中 b1=8 b(n-1)=64bn