已知数列{(an-1)-2an}是首项为2,公比为2的等比数列,即(an-1)-2an=2^n,用迭代法求{an}的通项
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 23:52:54
已知数列{(an-1)-2an}是首项为2,公比为2的等比数列,即(an-1)-2an=2^n,用迭代法求{an}的通项公式
接上:跪求该题【用迭代法求解{an}的通项公式】的详细解答过程,采纳后根据回答的具体情况再额外追加悬赏分5~50分,辛苦了!
不好意思!题目不小心打错了,并且条件不足,原题应该是:已知数列{(an+1)-2an}是首项为2,公比为2的等比数列,即(an+1)-2an=2^n,a1=2,用迭代法求{an}的通项公式,【 (an+1)中,(n+1) 为下标,该题的标准答案为:an=(n+1)*2^(n-1) 】
接上:跪求该题【用迭代法求解{an}的通项公式】的详细解答过程,采纳后根据回答的具体情况再额外追加悬赏分5~50分,辛苦了!
不好意思!题目不小心打错了,并且条件不足,原题应该是:已知数列{(an+1)-2an}是首项为2,公比为2的等比数列,即(an+1)-2an=2^n,a1=2,用迭代法求{an}的通项公式,【 (an+1)中,(n+1) 为下标,该题的标准答案为:an=(n+1)*2^(n-1) 】
①
∵a[n+1]-2an=2^n ([n-1]为下标)
∴an-2a[n-1]= 2ˆ(n-1)
an=2ˆ(n-1)+2a[n-1]
= 2ˆ(n -1)+2(2ˆ(n-2)+2a[n-2])
= 2ˆ(n-1) +2ˆ(n-1)+4×a[n-2]
= 2ˆ(n-1) +2ˆ(n-1)+4×(2ˆ(n-3)+2a[n-3])
= 2ˆ(n-1)+2ˆ(n-1)+2ˆ(n-1)+8×a[n-3]
=2ˆ(n-1)+2ˆ(n-1)+2ˆ(n-1)+8×(2ˆ(n-4)+2a[n-4])
=2ˆ(n-1)+2ˆ(n-1)+2ˆ(n-1)+2ˆ(n-1)+16×a[n-4]
.
.
.
an=2ˆ(n-1)+2ˆ(n-1)+2ˆ(n-1)+2ˆ(n-1)+...+2ˆ(n-1)+...+2ˆ(n-1)×a1
= (n-1)2ˆ(n-1)+2ˆ(n-1)×a1
= (n-1)2ˆ(n-1)+2ˆn
=(n-1)2ˆ(n-1)+2×2ˆ(n-1)
=(n+1)2ˆ(n-1)
②构造数列
a(n+1)-2an=2^n
两边同除2^(n+1)
得:a(n+1)/2^(n+1)-an/2^n=1/2
所以,令bn=an/2^n,b1=a1/2=1,所以bn是一个首项为1,公差为1/2的等差数列
所以,bn=b1+(n-1)/2=1+(n-1)/2=(n+1)/2
即:an/2^n=(n+1)/2
所以,得:an=(n+1)2^(n-1)
∵a[n+1]-2an=2^n ([n-1]为下标)
∴an-2a[n-1]= 2ˆ(n-1)
an=2ˆ(n-1)+2a[n-1]
= 2ˆ(n -1)+2(2ˆ(n-2)+2a[n-2])
= 2ˆ(n-1) +2ˆ(n-1)+4×a[n-2]
= 2ˆ(n-1) +2ˆ(n-1)+4×(2ˆ(n-3)+2a[n-3])
= 2ˆ(n-1)+2ˆ(n-1)+2ˆ(n-1)+8×a[n-3]
=2ˆ(n-1)+2ˆ(n-1)+2ˆ(n-1)+8×(2ˆ(n-4)+2a[n-4])
=2ˆ(n-1)+2ˆ(n-1)+2ˆ(n-1)+2ˆ(n-1)+16×a[n-4]
.
.
.
an=2ˆ(n-1)+2ˆ(n-1)+2ˆ(n-1)+2ˆ(n-1)+...+2ˆ(n-1)+...+2ˆ(n-1)×a1
= (n-1)2ˆ(n-1)+2ˆ(n-1)×a1
= (n-1)2ˆ(n-1)+2ˆn
=(n-1)2ˆ(n-1)+2×2ˆ(n-1)
=(n+1)2ˆ(n-1)
②构造数列
a(n+1)-2an=2^n
两边同除2^(n+1)
得:a(n+1)/2^(n+1)-an/2^n=1/2
所以,令bn=an/2^n,b1=a1/2=1,所以bn是一个首项为1,公差为1/2的等差数列
所以,bn=b1+(n-1)/2=1+(n-1)/2=(n+1)/2
即:an/2^n=(n+1)/2
所以,得:an=(n+1)2^(n-1)
已知数列{(an-1)-2an}是首项为2,公比为2的等比数列,即(an-1)-2an=2^n,用迭代法求{an}的通项
已知数列{an}满足a1=1,an+1=2an+1 1)求证:数列{an+1}为等比数列; 2) 求{an}的通项an
已知数列{an},若a1,a2-a1,a3-a2,a4-a3,an-an-1是公比为2的等比数列,则{an}的前n项和s
已知数列an为公比大于1的等比数列 有an+1=a1+a2+、、、+an-1+5/2an+1/2 求数列an的通项公式
已知数列〔An〕是首项为1,公比为2的等比数列,数列〔Bn〕的前n项和Sn=n² (1)求数列〔An〕与〔Bn
已知数列an的前n项和为Sn,数列根号Sn+1是公比为2的等比数列
已知数列{an}的前n项和为Sn,且满足Sn=2an-1,n为正整数,求数列{an}的通项公式an
已知等比数列{an}的公比为q,前n项和为Sn,求[Sn*Sn+2-(Sn+1)^2]/[an*an+2]
与等比数列相关的例题已知数列{an}的前N项和Sn=2an+1,求证:{an}为等比数列,并求出通项公式an已知数列AN
已知数列{an}的前n项和为Sn,a1=3,若数列{Sn+1}是公比为4的等比数列.(1)求数列的通项公式an ;(2)
已知数列An为等比数列,公比q=-1/2,lim(a1+a2+a3+.an/a2+a4+.+a2n)的值
已知数列{an}满足a1=1,an+1=2an/(an+2)(n∈N+),则数列{an}的通项公式为