提个函数连续性的证明题…… 设f(x)在区间[0,2a]上连续且f(0)=f(2a).证明至少存在一
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 00:06:34
提个函数连续性的证明题…… 设f(x)在区间[0,2a]上连续且f(0)=f(2a).证明至少存在一
提个函数连续性的证明题……
设f(x)在区间[0,2a]上连续且f(0)=f(2a).证明至少存在一点ξ∈[0,a],使得f(ξ)=f(ξ+a)
提个函数连续性的证明题……
设f(x)在区间[0,2a]上连续且f(0)=f(2a).证明至少存在一点ξ∈[0,a],使得f(ξ)=f(ξ+a)
证明:设g(x)=f(x+a)-f(x),则g(x)是[0,a]上的连续函数,
且g(0)=f(a)-f(0),g(a)=f(2a)-f(a)=f(0)-f(a)
所以g(0)=-g(a),即g(0)g(a)≤0,
由介值定理,知必存在c∈[0,a],使得
g(c)=0,即f(a+c)=f(a)
且g(0)=f(a)-f(0),g(a)=f(2a)-f(a)=f(0)-f(a)
所以g(0)=-g(a),即g(0)g(a)≤0,
由介值定理,知必存在c∈[0,a],使得
g(c)=0,即f(a+c)=f(a)
提个函数连续性的证明题…… 设f(x)在区间[0,2a]上连续且f(0)=f(2a).证明至少存在一
设函数F(X)在开区间(0,2a)上连续,且f(0)=f(2a),证明在零到A上至少存在一点X,使f(x)=f(a+x)
设函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上至少存在一点ξ,使f(ξ)=f(ξ+
设函数f(x)在区间【0,2a】上连续 且f(0)=f(2a),证明在【0,a】上至少有一点§
设函数f(x)在闭区间[0,1]上连续,且f(0)=f(1),证明至少存在一点a属于[0,1],使得f(a+1/2)=f
函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明;在[0,a]上至少存在一点使得f(x)=f(x+a)
设函数f(x)在[0,2兀]上连续,且f(0)=f(2兀),证明在[0,兀]上至少存在一点a使f(a)=f(a+兀)
设函数 f(x)在[0,2a]上连续,且 f(0) = f(2a),证明:存在Z属于[0,a),使得 f(Z) = f(
设函数f(X)在区间[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上存在一点c,使f(C)=f(c+a)
设函数f(x)在闭区间(0,2)上连续,在(0,2)上可导,且f(1)=1,f(0)=f(2)=0,证明:存在a属于(0
中值定理证明题设函数F(X)在[A B]上连续,在(A B)内可导,且F(A)=F(B)=0,试证明(A B)内至少存在
设函数f(x)在(a,b)上连续,在(a,b)内可导,且f(a)=0,证明:至少存在一点n属于(a,b)