已知y=f(x)为R上的可导函数,当x≠0时,f′(x)+f(x)x>0,则关于x的函数g(x)=f(x)+1x的零点个
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 17:17:10
已知y=f(x)为R上的可导函数,当x≠0时,f′(x)+
>0
f(x) |
x |
由于函数g(x)=f(x)+
1
x,可得x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的,
故我们考虑 xg(x)=xf(x)+1 的零点.
由于当x≠0时,f′(x)+
f(x)
x>0,
①当x>0时,(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x( f′(x)+
f(x)
x )>0,
所以,在(0,+∞)上,函数x•g(x)单调递增函数.
又∵
lim
x→0[xf(x)+1]=1,∴在(0,+∞)上,函数 x•g(x)=xf(x)+1>1恒成立,
因此,在(0,+∞)上,函数 x•g(x)=xf(x)+1 没有零点.
②当x<0时,由于(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x( f′(x)+
f(x)
x )<0,
故函数 x•g(x)在(-∞,0)上是递减函数,函数 x•g(x)=xf(x)+1>1恒成立,
故函数 x•g(x)在(-∞,0)上无零点.
综上可得,函g(x)=f(x)+
1
x在R上的零点个数为0,
故选C.
再问: 嗯 这样能理解 高中的知识能解决么
1
x,可得x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的,
故我们考虑 xg(x)=xf(x)+1 的零点.
由于当x≠0时,f′(x)+
f(x)
x>0,
①当x>0时,(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x( f′(x)+
f(x)
x )>0,
所以,在(0,+∞)上,函数x•g(x)单调递增函数.
又∵
lim
x→0[xf(x)+1]=1,∴在(0,+∞)上,函数 x•g(x)=xf(x)+1>1恒成立,
因此,在(0,+∞)上,函数 x•g(x)=xf(x)+1 没有零点.
②当x<0时,由于(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x( f′(x)+
f(x)
x )<0,
故函数 x•g(x)在(-∞,0)上是递减函数,函数 x•g(x)=xf(x)+1>1恒成立,
故函数 x•g(x)在(-∞,0)上无零点.
综上可得,函g(x)=f(x)+
1
x在R上的零点个数为0,
故选C.
再问: 嗯 这样能理解 高中的知识能解决么
已知y=f(x)为R上的可导函数,当x≠0时,f′(x)+f(x)x>0,则关于x的函数g(x)=f(x)+1x的零点个
f(x)为R上的函数 f(x+y)=f(x) f(y),当x>0时,0
f(x)为R上的函数,f(x+y)=f(x)f(y),当x>0时,0小于f(x)小于1
定义在R上的可导函数f(x),且f(x)图像是连续的,当x不等于0时,f'(x)+f(x)/x>0,则函数g(x)=f(
已知函数y=f(x)在R上是奇函数,且当x》0时,f(x)=x^2-2x+1,则f(x)的解析式为f(x)=
已知当x小于0时f(x)=a-x^2-2x当x大于等于0时f(x)=f(x-1)且函数y=f(x)-x恰有3个不同的零点
定义在R上的函数f(x)满足f (x + y) = f (x) + f ( y )(x,y∈R),当x>0时,f (x)
已知函数f(x)定义域在R上的函数,且对任意的x,y都有f(x+y)=f(x)+f(y)-1成立.当x>0时,f(x)>
已知函数f(x)=|x|,g(x)是定义在R上的奇函数,且当x<0时,g(x)=x(x+1),则方程f(x)+g(x)=
已知函数f(x),x∈R的图像关于y轴对称且当x∈(0,1)时,f(x)=x^2,同时f(x+2)=f(x).求f(x)
已知f(x)是R上的偶函数,当x≥0时,f(x)=2^x-2√x,又a是函数g(x)=ln(x+1)-2/x的正零点
已知函数f(x)是R上的偶函数,且f(1-x)=f(1+x),当x∈[0,1]时,f(x)=x2,则函数y=f(x)-l