12.已知直线y=-x+1与椭圆x*2/a*2+y*2/b*2=1(a>b>0)相交于A,B两点,且线段AB的中点
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 14:06:43
12.已知直线y=-x+1与椭圆x*2/a*2+y*2/b*2=1(a>b>0)相交于A,B两点,且线段AB的中点
12.已知直线y=-x+1与椭圆x*2/a*2+y*2/b*2=1(a>b>0)相交于A,B两点,且线段AB的中点在直线L:x-2y=0上;(II)若椭圆的右焦点关于直线L的对称点在圆x*2+y*2=4上,求此椭圆的方程
12.已知直线y=-x+1与椭圆x*2/a*2+y*2/b*2=1(a>b>0)相交于A,B两点,且线段AB的中点在直线L:x-2y=0上;(II)若椭圆的右焦点关于直线L的对称点在圆x*2+y*2=4上,求此椭圆的方程
将y=-x+1代入椭圆方程得(b*2+a*2)x*2-2a*2x+a*2-a*2b*2=0,判别式>0,得4a*2b*2(b*2+a*2-1)>0,即b*2+a*2>1,应用韦达定理,中点横坐标=a*2/(b*2+a*2),由y=-x+1,得中点纵坐标=b*2/(b*2+a*2),因中点在x-2y=0上,所以a*2=2b*2.设右焦点(c,0)关于L的对称点(x,y),则解方程组:
(y-0)/(x-c)=-2和(x+c)/2-2(y+0)/2=0得x=3c/5,y=4c/5,代入圆方程得出c=2.再用b*2+c*2=a*2和已经求出的a*2=2b*2,求出b=c=2,a*2=8,椭圆方程为x*2/8+y*2/4=1.经验证符合b*2+a*2>1,即判别式>0,保证了有两个交点.
(y-0)/(x-c)=-2和(x+c)/2-2(y+0)/2=0得x=3c/5,y=4c/5,代入圆方程得出c=2.再用b*2+c*2=a*2和已经求出的a*2=2b*2,求出b=c=2,a*2=8,椭圆方程为x*2/8+y*2/4=1.经验证符合b*2+a*2>1,即判别式>0,保证了有两个交点.
12.已知直线y=-x+1与椭圆x*2/a*2+y*2/b*2=1(a>b>0)相交于A,B两点,且线段AB的中点
已知直线y=-x+1与椭圆x^2/a^2+y^2/b^2=1(a>b>0)相交与A,B两点,且线段AB的中点在直线L:x
已知直线y=-x+1与椭圆x^2/a^2 + y^2/b^2=1(a>b>0)相交与A、B两点,且线段AB的中点在直线l
已知直线y=-x+1与椭圆 相交于A、B两点,且线段AB的中点在直线L:x-2y=0上,则此椭圆的离心率为_______
已知直线x+y-1=0与椭圆x^2/a^2+y^2/b^2=1(a>b>0)相交于AB两点,线段AB的中点M在直线L:Y
已知直线y=-1/2x+1与椭圆x^2/a^2 + y^2/b^2=1(a>b>0)相交与A、B两点,且线段AB的中点在
已知椭圆mx^2+ny^2=1与直线x+y=1相交于A,B两点,M是线段AB的中点,且/AB/=二倍根号二,OM的斜率为
已知椭圆C:x^2/8+y^2=1,左焦点F(-2,0),若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点
已知直线y=-1/2x+2和椭圆x2/a2+y2/b2=1{a>b>0}相交于A,B两点,M为线段AB的中点,若AB的绝
直线y=x+b(b属于R)与椭圆y^2/2+x^2=1相交于A,B两点,则线段AB中点的轨迹方程为
已知直线y=-1/2x+2和椭圆x2/a2+y2/b2=1{a>b>0}相交于A,B两点,M为线段AB的中点,
已知直线y=-x+1与椭圆(x^2)/(a^2)+(y^2)/(b^2)=1.(a>b>0)相交于A、B两点.