作业帮 > 数学 > 作业

如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 23:15:03
如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两
(1)求b,c的值;
(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下:
①求以点E、B、F、D为顶点的四边形的面积;
②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.
如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c
本题是二次函数综合题,涉及到的知识点较多,较有难度,考察待定系数法,两点间的距离以及不规则图形的面积 (1)由已知得:A(-1,0) B(4,5)
∵二次函数的图像经过点A(-1,0)B(4,5)
∴ 二次函数的图像经过点A(-1,0)B(4,5)
代入 解得:b=-2 c=-3          
(2)∵直线AB经过点A(-1,0)B(4,5)
∴直线AB的解析式为:y=x+1
∵二次函数y=x^2-2x-3
∴设点E(t,t+1),则F(t,t^2-2t-3)
∴EF= (t+1)+It^2-2t-3I
 =t+1-(t^2-2t-3)
=-(t-3/2)^2+25/4
∴当t=3/2时,EF的最大值=25/4 
(3)s=75/8
ⅰ过点E作a⊥EF交抛物线于点P,
设点P(m,m^2-2m-3)
则有:m^2-2m-3=5/2
ⅱ)过点F作b⊥EF交抛物线于,
综上所述:所有点P的坐标(3点) 能使△EFP组成以EF为直角边的直角三角形.