一元函数导数的性质看新东方老师讲课提到的结论:f(x)=(x-x0)*│x-x0│在x=x0处不仅可导且一阶可导,但它的
一元函数导数的性质看新东方老师讲课提到的结论:f(x)=(x-x0)*│x-x0│在x=x0处不仅可导且一阶可导,但它的
函数在x0的某邻域U有定义 且在x0可导 对任意x f(x)小于等于f(x0) 证明f'(x0)=0
函数f(X)在x0可导,且在x0处取得极值,那么f'(x0)=0的什么条件?
函数f(x)在x0的左导数存在是f(x)在x0可导的什么条件
已知函数y=f(x)在x=x0处有连续导数,则x->x0时[f(x0-x)-f(x0+x)]/x的极限?
可导函数y=f(x)在点x0处取得极值,且在x0左侧与右侧f′(x)的符号不同是什么意思
导数概念题设f(x)在x0处连续且x趋向x0时f(x)/(x-x0)的极限等于A.请问f(x0)的一阶导数等于?答案是A
如果函数f(x)在点X0处可导,且在X0处的极值,则f1(X0)=多少
设函数y=f(x)在点x0处有导数,且f'(x0)>0,则曲线y=f(x)在点(x0,f(x0))处切线的倾斜角的范围是
导数极限形式的证明1)f'(x0)=lim(x→x0)[f(x)-f(x0)]/(x-x0) 2)f'(x)=lim(h
已知函数f(x)在x0可导,且lim(h→0)h/[f(x0-2h)-f(x0)]=1/4,则f‘(x0)=?
证明极值点导数为零老师 费马引理定义在x0有心邻域f(x)≤f(x0)且函数可导,推出f(x0)导数=0..极大值定义是