若x,y,z都是正实数,且x+y+z=xyz,且1/(x+y)+1/(y+z)+1/(z+x)恒成立,求a的取值范围
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 01:11:31
若x,y,z都是正实数,且x+y+z=xyz,且1/(x+y)+1/(y+z)+1/(z+x)恒成立,求a的取值范围
若x,y,z都是正实数,且x+y+z=xyz,且1/(x+y)+1/(y+z)+1/(z+x)恒成立,
求a的取值范围
可以用柯西不等式
1/(x+y)+1/(y+z)+1/(z+x)
若x,y,z都是正实数,且x+y+z=xyz,且1/(x+y)+1/(y+z)+1/(z+x)恒成立,
求a的取值范围
可以用柯西不等式
1/(x+y)+1/(y+z)+1/(z+x)
[1/(x+y)+1/(y+z)+1/(z+x)]^2
≤[1/(x+y)^2+1/(y+z)^2+1/(z+x)^2](1^2+1^2+1^2) (柯西不等式)
≤3(1/4xy+1/4yz+1/4zx) (均值不等式)
=(3/4)(x+y+z)/xyz=3/4.
所以1/(x+y)+1/(y+z)+1/(z+x)≤根号3/2. 且x=y=z=根号3时,等号成立.
故a∈[根号3/2,+∞).
≤[1/(x+y)^2+1/(y+z)^2+1/(z+x)^2](1^2+1^2+1^2) (柯西不等式)
≤3(1/4xy+1/4yz+1/4zx) (均值不等式)
=(3/4)(x+y+z)/xyz=3/4.
所以1/(x+y)+1/(y+z)+1/(z+x)≤根号3/2. 且x=y=z=根号3时,等号成立.
故a∈[根号3/2,+∞).
若x,y,z都是正实数,且x+y+z=xyz,且1/(x+y)+1/(y+z)+1/(z+x)恒成立,求a的取值范围
已知 x,y,z都是正实数,且 x+y+z=xyz 证明 (y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1
已知x,y,z都是正实数,且x+y=xy,x+y+z=xyz,则z的取值范围是
已知x、y、z、是正实数,且x+y+z=xyz,求1/(x+y)+1/(y+z)+1/(x+z)的最大值.
已知x,y,z∈R^+,x+y+z=xyz,且去1/(x+y)+1/(y+z)+1/(z+x)≤k恒成立,则k的取值范围
x,y,z都是不小于1的实数,xyz=10,且x^(lgx)×y^(lgy)×z^(lgz)=10,求x,y,z的值.
若x+y+z=0且xyz不等于0,求x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)的值
若x,y,z是正实数,且x+y+z=xyz,证明:(y+z/x)+(z+x/y)+(x+y/z)≥2倍的(1/x)+(1
若xyz不等于0,且满足(y+z)/x=(x+z)/y=(x+y)/z,求(y+z)(x+z)(x+y)/xyz的值
若xyz不等于0,且(y+z)/x=(z+x)/y=(x+y)/z,求(y+z)(z+x)(x+y)/xyz的值?
己知x,y,z都是非零有理数,且满足|x|/x+|y|/y+z/|z|=1,请你求xyz/|xyz|的值.求因为所以?
若xy-z不等于0,且(y+x)/x=(z+x)/y=(y+x)/z,求[(y+z)(z+x)(x+y)]/xyz的值?