作业帮 > 数学 > 作业

设函数f(x)=2cosxsin(x+π/6)+2sinxcos(x+π/6)⑴当x属于0到2分之π的闭区间求f(x)的

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 07:23:22
设函数f(x)=2cosxsin(x+π/6)+2sinxcos(x+π/6)⑴当x属于0到2分之π的闭区间求f(x)的值域⑵设三角形ABC的三个内角ABC所对的三边依次为abc已知f(A)=1,a=根号7,三角形ABC面积为2分之3倍根号3求b+c
设函数f(x)=2cosxsin(x+π/6)+2sinxcos(x+π/6)⑴当x属于0到2分之π的闭区间求f(x)的
f(x)=2cosxsin(x+π/6)+2sinxcos(x+π/6)
=2sin(2x+π/6),
(1)x∈[0,π/6],
∴2x+π/6∈[π/6,π/2],
∴f(x)的值域是[1,2].
(2)f(A)=2sin(2A+π/6)=1,
∴sin(2A+π/6)=1/2,
2A+π/6=5π/6,
A=π/3,
由余弦定理,7=b^+c^-bc,
(1/2)bc*√3/2=(3/2)√3,bc=6,
∴(b+c)^=25,
b+c=5.