数学截长补短专题正方形ABCD中,点E在BC边上移动,角EAF=45度,AF交CD于F,连接EF.求证:BE+DF=EF
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 10:42:55
数学截长补短专题
正方形ABCD中,点E在BC边上移动,角EAF=45度,AF交CD于F,连接EF.求证:BE+DF=EF
正方形ABCD中,点E在BC边上移动,角EAF=45度,AF交CD于F,连接EF.求证:BE+DF=EF
证明:延长CB到G,使得BG=DF.
在正方形ABCD中
1,证明:RT⊿ADF≌RT⊿ABG,DF=BG
∵∠D=∠ABC=90°(正方形的内角等于90度),∠ABC+∠ABG=180°(平角为180度)
∴∠D=∠ABG=90°(等量公理)
∵AD=AB(正方形的边长相等),DF=BG(所做)
∴RT⊿ADF≌RT⊿ABG(两角夹边相等,两三角形全等)
∴AF=AG,∠DAF=∠BAG(全等三角形的对应边,对应角相等)
2,证明:∠EAF=∠EAG=45°
∵AD=AC(正方形的边长相等)
∴∠DAC=∠DAF+∠FAC=90°/2=45°(直角三角形的锐角和为90度,三角形的等边对等角)
∵∠EAF=∠EAC+∠FAC=45°(已知)
∴∠DAF=∠EAC=∠BAG(等量公理)
同理可证:∠BAC=∠BAE+∠EAC=45°
∴∠EAG=∠BAE+∠BAG=45°(等量公理)
∴∠EAF=∠EAG=45°
3,证明:⊿EAF≌⊿EAG,EF=BE+BG=BE+DF
∵AE是公用边
∴⊿EAF≌⊿EAG(两边夹角相等,两三角形全等)
∴EF=EG=BE+BG=BE+DF(全等三角形对应边相等)
在正方形ABCD中
1,证明:RT⊿ADF≌RT⊿ABG,DF=BG
∵∠D=∠ABC=90°(正方形的内角等于90度),∠ABC+∠ABG=180°(平角为180度)
∴∠D=∠ABG=90°(等量公理)
∵AD=AB(正方形的边长相等),DF=BG(所做)
∴RT⊿ADF≌RT⊿ABG(两角夹边相等,两三角形全等)
∴AF=AG,∠DAF=∠BAG(全等三角形的对应边,对应角相等)
2,证明:∠EAF=∠EAG=45°
∵AD=AC(正方形的边长相等)
∴∠DAC=∠DAF+∠FAC=90°/2=45°(直角三角形的锐角和为90度,三角形的等边对等角)
∵∠EAF=∠EAC+∠FAC=45°(已知)
∴∠DAF=∠EAC=∠BAG(等量公理)
同理可证:∠BAC=∠BAE+∠EAC=45°
∴∠EAG=∠BAE+∠BAG=45°(等量公理)
∴∠EAF=∠EAG=45°
3,证明:⊿EAF≌⊿EAG,EF=BE+BG=BE+DF
∵AE是公用边
∴⊿EAF≌⊿EAG(两边夹角相等,两三角形全等)
∴EF=EG=BE+BG=BE+DF(全等三角形对应边相等)
数学截长补短专题正方形ABCD中,点E在BC边上移动,角EAF=45度,AF交CD于F,连接EF.求证:BE+DF=EF
如图,已知四边形ABCD是正方形,过点A作角EAF=45度,分别交BC、CD于点E、F,连接EF,求证:EF=BE+DF
在正方形ABCD中,E、F分别为BC、CD上的点,BE+DF=EF.求证:角EAF=45°
已知:如图10,在正方形ABCD中,点E,F分别在BC和CD上,AE=AF.(1)求证:BE=DF(2)连接AC交EF于
初三正方形几何题在正方形ABCD中,E,F分别是BC CD上的点,且EF=BE+DF,求证:∠EAF=45°
在正方形ABCD中,点E为BC边上一点,连接AE,以AE为一边做角EAF=45度,AF交直线BC于点F,连接DF,若AB
正方形ABCD中,E,F分别是BC,CD上两点,连接AE,AF.且BE+DF=EF.连接BD,,交AE,AF于M,N两点
在正方形abcd中,e是bc边上一点,af平分角EAD交cd于点f.求证ae=be+df
如图所示,已知正方形ABCD中,E、F分别是BC、CD上的点,且BE>DF,若∠EAF=45°,求证:EF=BE+DF
在正方形ABCD中,EF分别为BC,CD上的点 且BE+DF=EF 求证 角EAF=45度
已知点e,f分别在正方形abcd的边bc,cd上,分别连接ae,af和ef,若∠eaf=45°,试说明:ef=be+df
正方形ABCD中,点E在BC上,点F在CD上,角EAF=45度,AH垂直EF于H.求证:AH=AB