设x、y、z为整数,证明:x^4*(y-z)+y^4*(z-x)+z^4*(x-y)/(y+z)^2+(z+x)^2+(
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 13:22:47
设x、y、z为整数,证明:x^4*(y-z)+y^4*(z-x)+z^4*(x-y)/(y+z)^2+(z+x)^2+(x+y)^2为整数
x^4(y-z)+y^4(z-x)+z^4(x-y)
=xy(x^3-y^3)+yz(y^3-z^3)+zx(z^3-x^3)
=xy(x^3-y^3)+yz(y^3-z^3)-zx[(x^3-y^3)+(y^3-z^3)]
=x(y-z)(x^3-y^3)+z(y-x)(y^3-z^3)
=(x-y)(y-z)[x(x^2+xy+y^2)-z(y^2+yz+z^2)]
=(x-y)(y-z)[(x^3-z^3)+(x^2-z^2)y+(x-z)y^2]
=(x-y)(y-z)(x-z)(x^2+y^2+z^2+xy+yz+zx)
又(x+y)^2+(y+z)^2+(z+x)^2=2(x^2+y^2+z^2+xy+yz+zx)
所以[x^4(y-z)+y^4(z-x)+z^4(x-y)]/[(x+y)^2+(y+z)^2+(z+x)^2]
=(x-y)(y-z)(x-z)/2
又因为x-y,y-z,x-z三个数中至少有一个是偶数
所以(x-y)(y-z)(x-z)/2为整数,证毕
=xy(x^3-y^3)+yz(y^3-z^3)+zx(z^3-x^3)
=xy(x^3-y^3)+yz(y^3-z^3)-zx[(x^3-y^3)+(y^3-z^3)]
=x(y-z)(x^3-y^3)+z(y-x)(y^3-z^3)
=(x-y)(y-z)[x(x^2+xy+y^2)-z(y^2+yz+z^2)]
=(x-y)(y-z)[(x^3-z^3)+(x^2-z^2)y+(x-z)y^2]
=(x-y)(y-z)(x-z)(x^2+y^2+z^2+xy+yz+zx)
又(x+y)^2+(y+z)^2+(z+x)^2=2(x^2+y^2+z^2+xy+yz+zx)
所以[x^4(y-z)+y^4(z-x)+z^4(x-y)]/[(x+y)^2+(y+z)^2+(z+x)^2]
=(x-y)(y-z)(x-z)/2
又因为x-y,y-z,x-z三个数中至少有一个是偶数
所以(x-y)(y-z)(x-z)/2为整数,证毕
设x、y、z为整数,证明:x^4*(y-z)+y^4*(z-x)+z^4*(x-y)/(y+z)^2+(z+x)^2+(
x,y,z正整数 x>y>z证明 x^2x +y^2y+z^2z>x^(y+z)*y^(x+z)*z^(x+y)
设X,Y,Z为正实数,求(1+2X)*(3Y+4X)*(4y+3z)*(2z+1)/(x*y*z)的最小值
(y-x)/(x+z-2y)(x+y-2z)+(z-y)(x-y)/(x+y-2z)(y+z-2x)+(x-z)(y-z
试证明(x+y-2z)+(y+z-2x)+(z+x-2y)=3(x+y-2z)(y+z-2x)(z+x-2y)
设X,Y,Z都是整数,满足条件(X-Y)(Y-Z)(Z-X)=X+Y+Z,试证明X+Y+Z能被27整除
1.设X ,Y,Z 成等差数列,代数式(X-Z)*(X-Z)+ 4(X-Y)(Z-Y)=
求解2x≥x+y+z 4y≥x+y+Z 8z≥x+y+z x、y、z均大于0
x=y/z=z/3,x+y+z =12,求2x+3y+4z是多少,
化简(y-x)(z-x)/(x-2y+z)(x+y-2z)+(z-y)(x-y)/(x-2z+y)(y+z-2x)+(x
证明:x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2能被(x+y+z)整除
(x-2y+z)(x+y-2z)分之(y-x)(z-x) + (x+y-2z)(y+z-2x)分之(z-y)(x-y)