已知函数f(x)=x^3+ax^2+3/2x+3/2a,且f'(-1)=0 1,求a的值 2,求函数f(x)在[-1,0
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 22:00:11
已知函数f(x)=x^3+ax^2+3/2x+3/2a,且f'(-1)=0 1,求a的值 2,求函数f(x)在[-1,0]上的最值
已知函数f(x)=x^3+ax^2+(3/2)x+(3/2)a,且f'(-1)=0
1,求a的值
2,求函数f(x)在[-1,0]上的最值
已知函数f(x)=x^3+ax^2+(3/2)x+(3/2)a,且f'(-1)=0
1,求a的值
2,求函数f(x)在[-1,0]上的最值
(1)
f(x)=x^3+ax^2+(3/2)x+(3/2)a
f'(x)=3x^2+2ax+3/2
f'(-1)=3*(-1)^2+2a*(-1)+3/2=0
3-2a+3/2=0
2a=3+3/2=9/2
a=9/4
f'(x)=3x^2+2*9/4x+3/2
=3x^2+9x/2+3/2
=3(x^2+3x/2+9/16)-27/16+3/2
=3(x+3/4)^2-3/16
当x=-3/4时有最值,不在区间[-1,0]内
所以函数f(x)在[-1,0]上的最小值
是f(-1)=(-1)^3+9/4*(-1)^2+3/2*(-1)+3/2*9/4
=-1+9/4-3/2+27/8
=25/8
函数f(x)在[-1,0]上的最大值
是f(0)=(3/2)*9/4
=27/8
f(x)=x^3+ax^2+(3/2)x+(3/2)a
f'(x)=3x^2+2ax+3/2
f'(-1)=3*(-1)^2+2a*(-1)+3/2=0
3-2a+3/2=0
2a=3+3/2=9/2
a=9/4
f'(x)=3x^2+2*9/4x+3/2
=3x^2+9x/2+3/2
=3(x^2+3x/2+9/16)-27/16+3/2
=3(x+3/4)^2-3/16
当x=-3/4时有最值,不在区间[-1,0]内
所以函数f(x)在[-1,0]上的最小值
是f(-1)=(-1)^3+9/4*(-1)^2+3/2*(-1)+3/2*9/4
=-1+9/4-3/2+27/8
=25/8
函数f(x)在[-1,0]上的最大值
是f(0)=(3/2)*9/4
=27/8
已知函数f(x)满足f(ax-1)=lg^((x+2)/(x-3)),(a≠0) (1)求f(x)的表达式(2)求f(x
已知函数f(x)=x^3+ax^2+3/2x+3/2a,且f'(-1)=0 1,求a的值 2,求函数f(x)在[-1,0
已知函数f(x)=ax^3-x^2=1(a>0)求f'(x)及函数f(x)的极大值与极小值
已知函数f(x)=x^2+ax-1/2a,试求常数a的值,使f'27(x)=0且f(x)=0
已知函数f(x)的定义域为x属于【-1/2,3/2】,求g(x)=f(ax)+F(x/a)(a>0)的定义域
已知二次函数f(x)=ax²+4x+3a,且f(1)=0 求函数f(x)在【t,t+1】上的最大
已知函数f(x)等于x^3加ax^2加3/2x加3/2a,且f'(-1)等于0 求a的值 求函数f(x)在〔-1,0〕上
已知二次函数f(x)满足f(x+1)-f(x)=2X且f(0)=3求 f(x)的解析式 设g(x)=f(x+a),x∈【
已知函数f(x)=ax÷2X+3)满足f[f(x)]=x求a的值
已知函数f(x)=3x^2+2x (1)求f(2),f(-2),f(2)+f(-2)的值 (2)求f(a),f(-a),
已知函数f(x)满足条件f(ax-1)=lg(x+2/x-3)(a不等于0).求f(x)的表达式
已知函数f(x)=x^2+2ax+3,求函数f(x)在[-1,1]的最小值的表达式f(a)