作业帮 > 数学 > 作业

已知2x+3y+6z=12,求x的平方+y的平方+z的平方的最小值

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 08:07:22
已知2x+3y+6z=12,求x的平方+y的平方+z的平方的最小值
已知2x+3y+6z=12,求x的平方+y的平方+z的平方的最小值
这里要用到柯西不等式
(x²+y²+z²)(2²+3²+6²)≥(2x+3y+6z)²=12²
∴x²+y²+z²≥12²/(2²+3²+6²)=144/49
∴x的平方+y的平方+z的平方的最小值是144/49
这是我在静心思考后得出的结论,
如果不能请追问,我会尽全力帮您解决的~
如果您有所不满愿意,请谅解~