已知A1=x,A(n+1)=1- 1/An ,(n=1,2,3……)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 04:25:14
已知A1=x,A(n+1)=1- 1/An ,(n=1,2,3……)
(1)求A2、A3、A4、A5
(2)求 A2002
(3)求A2000+A2001+A2002
答案是(1)A2=x-1/x,A3=- x-1/1 A4=x A5=x-1/x
(2)x
(3)x的3次方-3x+1/x(x-1)
因为我没有解题思路,尽管知道答案,
(1)求A2、A3、A4、A5
(2)求 A2002
(3)求A2000+A2001+A2002
答案是(1)A2=x-1/x,A3=- x-1/1 A4=x A5=x-1/x
(2)x
(3)x的3次方-3x+1/x(x-1)
因为我没有解题思路,尽管知道答案,
a1=x
a2=1-1/a1=1-1/x=(x-1)/x (这是通分后相加)
a3=1-1/a2=1-x/(x-1) =1/(1-x) (1/a2=a2的倒数即 x/(x-1))好像你的答案不对哦.
a4=1-1/a3=1-(1-x)=x (1/a3=a3的倒数即 (1-x)) 这又回到a1了.
a5=a2=(x-1)/x.
显然:3组一循环了.
同理a2002,2002/3=667余1,a2002=a1=x
a2000,2000/3=666余2 ,a2000=a2=(x-1)/x
同样a2001=a3=1/(1-x)
A2000+A2001+A2002=(x-1)/x+1/(1-x)+x,通分(分母x*(1-x))
={(x-1)*(1-x)+x+x*x*(1-x)}/x*(1-x)=( -3*x^3+3x-1)/x*(1-x)=(x^3-3x+1)/x(x-1)
最后一步是分子分母乘以-1了.把分母中1-x变成了x-1.
OK,明白了吗?
a2=1-1/a1=1-1/x=(x-1)/x (这是通分后相加)
a3=1-1/a2=1-x/(x-1) =1/(1-x) (1/a2=a2的倒数即 x/(x-1))好像你的答案不对哦.
a4=1-1/a3=1-(1-x)=x (1/a3=a3的倒数即 (1-x)) 这又回到a1了.
a5=a2=(x-1)/x.
显然:3组一循环了.
同理a2002,2002/3=667余1,a2002=a1=x
a2000,2000/3=666余2 ,a2000=a2=(x-1)/x
同样a2001=a3=1/(1-x)
A2000+A2001+A2002=(x-1)/x+1/(1-x)+x,通分(分母x*(1-x))
={(x-1)*(1-x)+x+x*x*(1-x)}/x*(1-x)=( -3*x^3+3x-1)/x*(1-x)=(x^3-3x+1)/x(x-1)
最后一步是分子分母乘以-1了.把分母中1-x变成了x-1.
OK,明白了吗?
已知数列{an}满足a1=1,an=a1 +1/2a2 +1/3a3 … +1/(n-1)a(n-1),(n>1,n∈N
已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1
已知A1=x,A(n+1)=1- 1/An ,(n=1,2,3……)
已知数列{An}满足A1=0.5,A1+A2+…+An=n^2An(n∈N*),试用数学归纳法证明:An=1/n(n+1
已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=((n+1)/2)a(n+1)(n∈N*)
在数列{an}中,已知(a1+a2+…+an)/n=(2n-1)an
已知在数列{an}中,a1=2,a(n+1)-3a(n)=3n,求an
已知数列an中,a1=1 2a(n+1)-an=n-2/n(n+1)(n+2) 若bn=an-1/n(n+1)
已知数列{an}满足a1=1;an=a1+2a2+3a3+...+(n-1)a(n-1);
已知数列{An}满足A1=1,A=3(n-1)+A(n>/2)
已知数列a1=2,[a(n+1)]=-2[a(n)]+3求an
.感激= 已知数列{an}中,a1=3,an=(2^n)*a(n-1) (n》2,n∈N*)求数列an通项公式