..在直角三角形ABC中,D、E、F分别是三边上的任意点,已知直角三角形三边分别为3、4、5,请问三角形DEF周长的最小
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 22:20:29
..
在直角三角形ABC中,D、E、F分别是三边上的任意点,已知直角三角形三边分别为3、4、5,请问三角形DEF周长的最小值是多少?(要具体过程.)
在直角三角形ABC中,D、E、F分别是三边上的任意点,已知直角三角形三边分别为3、4、5,请问三角形DEF周长的最小值是多少?(要具体过程.)
在一个三角形ABC中,有一个内三角形PDE.AB是底边,点P在AB边上,点D在AC边上,点E在BC边上.在某个特殊的位置上,三角形PDE有一个最小值周长.
求:当三角形PDE的周长是最小值时,点P处于AB边上一个特殊的位置.点P在哪里?点D和点E又在哪里?最小值周长是多少?
根据提示,连接CP、CR、CT,设PR交AC于H,PT交BC于H'
显然,D、E只有分别对应RT与AC、BC的交点,三角形DEP的周长才是最小的,也就是此时三角形DEF的周长就是RT的长度
因为RH=PH,且角CH垂直于RP,所以三角形RCH与三角形PCH全等,
故有角RCH=角PCH,CR=CP
同理可证角TCH'=角PCH',CT=CP
所以CR=CP=CT
所以角RCT=2倍角ACB
由余弦定理RT^2=CR^2+CT^2-2*CR*CT*cos角RCT
又根据上面得出的结论,用CP分别替代CR、CT,用2倍角ACB替代角RCT
有RT^2=2*CP^2*(1-cos2倍角ACB)
因为角ACB为定值,显然,只有当CP最小时,RT才是最小的
所以P点为从C作垂线与AB的交点,D、E两点就是RT与AC、BC的交点(也可以证明这两点也是垂线的交点)
要求最小周长,得把CP用三角形的边和角表示出来,可有多种选择
我用CP=AC*sin角CAB表示
则RT^2=2*(AC*sin角CAB)^2*(1-cos2倍角ACB)
开方后即得内接三角形周长的最小值
注:RT^2表示RT的平方的意思,其它的类推
求:当三角形PDE的周长是最小值时,点P处于AB边上一个特殊的位置.点P在哪里?点D和点E又在哪里?最小值周长是多少?
根据提示,连接CP、CR、CT,设PR交AC于H,PT交BC于H'
显然,D、E只有分别对应RT与AC、BC的交点,三角形DEP的周长才是最小的,也就是此时三角形DEF的周长就是RT的长度
因为RH=PH,且角CH垂直于RP,所以三角形RCH与三角形PCH全等,
故有角RCH=角PCH,CR=CP
同理可证角TCH'=角PCH',CT=CP
所以CR=CP=CT
所以角RCT=2倍角ACB
由余弦定理RT^2=CR^2+CT^2-2*CR*CT*cos角RCT
又根据上面得出的结论,用CP分别替代CR、CT,用2倍角ACB替代角RCT
有RT^2=2*CP^2*(1-cos2倍角ACB)
因为角ACB为定值,显然,只有当CP最小时,RT才是最小的
所以P点为从C作垂线与AB的交点,D、E两点就是RT与AC、BC的交点(也可以证明这两点也是垂线的交点)
要求最小周长,得把CP用三角形的边和角表示出来,可有多种选择
我用CP=AC*sin角CAB表示
则RT^2=2*(AC*sin角CAB)^2*(1-cos2倍角ACB)
开方后即得内接三角形周长的最小值
注:RT^2表示RT的平方的意思,其它的类推
..在直角三角形ABC中,D、E、F分别是三边上的任意点,已知直角三角形三边分别为3、4、5,请问三角形DEF周长的最小
若三角形ABC的周长为20cm,点D,E,F分别是三角形ABC三边的中点,则三角形DEF的周长为______cm.
已知:如图△ABC中,D,E,F分别是三边种点,△DEF面积为4cm²,求△ABC的面积?
如图,在三角形abc中,d,e,f分别是三边中点,则四边形cdef的周长为
在三角形ABC和三角形EDF中,D,E,F分别是三角形ABC的三边BC,CA,AB的中点,求三角形DEF相似三角形ABC
若△ABC的周长为20cm,点D,E,F分别是△ABC三边的中点,则△DEF的周长为( )
若三角形ABC的内切圆与三边的切点分别为D,E,F,则三角形DEF一定是锐角三角形
如图 在三角形abc是等腰直角三角形,角A=90度,D,E,F是三边的中点,试判断三角形DEF
如图,点D、E、F分别为△ABC三边的中点,若△DEF的周长为10,则△ABC的周长为( )
纯粹送分题已知直角三角形ABC,E为斜边AC的中点,D、F为AB、BC上的动点,求证三角形DEF的周长大于斜边AC
已知D.E.F分别是锐角三角形ABC的三边BC,CA,AB上的点,
如图,D为直角三角形ABC斜边AB上一点,以CD为直径的圆分别叫三角形ABC三边于E、F、G三点,连EF、FG