作业帮 > 数学 > 作业

∫(|x|+sinx)x²dx 范围在1到-1

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 17:01:11
∫(|x|+sinx)x²dx 范围在1到-1
∫(|x|+sinx)x²dx 范围在1到-1
此为对称区间定积分x²sinx为奇函数,对称区间积分为0,|x|x²为偶函数,原式=∫|x|x²dx (-1到1)=
2∫xx²dx (0到1)=1/2;