观察下列各式:1/1*2=1/1-1/2,1/2*3=1/2-1/3,1/3*4=1/3-1/4.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 14:07:09
观察下列各式:1/1*2=1/1-1/2,1/2*3=1/2-1/3,1/3*4=1/3-1/4.
(1)利用上述规律计算1/2+1/6+1/12+...+1/(n-1)n + 1/n(n+1)
(2)利用上述规律解方程 1/(x-4)(x-3)+1/(x-3)(x-2)+1/(x-2)(x-1)+1/(x-1)x+1/x(x+1)=1/x+1
(1)利用上述规律计算1/2+1/6+1/12+...+1/(n-1)n + 1/n(n+1)
(2)利用上述规律解方程 1/(x-4)(x-3)+1/(x-3)(x-2)+1/(x-2)(x-1)+1/(x-1)x+1/x(x+1)=1/x+1
(1)利用上述规律计算:
1/2+1/6+1/12+...+1/(n-1)n + 1/n(n+1)
=1-1/2+1/2-1/3+1/3-1/4+……+1/(n-1)-1/n+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
(2)利用上述规律解方程:
1/(x-4)(x-3)+1/(x-3)(x-2)+1/(x-2)(x-1)+1/(x-1)x+1/x(x+1)=1/(x+1)
1/(x-4)-1/(x-3)+1/(x-3)-1/(x-2)+1/(x-2)-1/(x-1)+1/(x-1)-1/x+1/x-1/(x+1)=1/(x+1)
1/(x-4)-1/(x+1)=1/(x+1)
[x+1-(x-4)]/[(x-4)(x+1)=1/(x+1)
5/[(x-4)(x+1)]=1/(x+1)
5(x+1)=(x-4)(x+1)
5=x-4
x=9
1/2+1/6+1/12+...+1/(n-1)n + 1/n(n+1)
=1-1/2+1/2-1/3+1/3-1/4+……+1/(n-1)-1/n+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
(2)利用上述规律解方程:
1/(x-4)(x-3)+1/(x-3)(x-2)+1/(x-2)(x-1)+1/(x-1)x+1/x(x+1)=1/(x+1)
1/(x-4)-1/(x-3)+1/(x-3)-1/(x-2)+1/(x-2)-1/(x-1)+1/(x-1)-1/x+1/x-1/(x+1)=1/(x+1)
1/(x-4)-1/(x+1)=1/(x+1)
[x+1-(x-4)]/[(x-4)(x+1)=1/(x+1)
5/[(x-4)(x+1)]=1/(x+1)
5(x+1)=(x-4)(x+1)
5=x-4
x=9
观察下列各式:1×3=12+2×1
观察下列各式:1×2=13
观察下列各式:1³+2³=9=¼×4×9=¼×2²×3&sup
观察下列各式:11×3=12(1−13)
观察下列各式:11×2=1−12
观察下列各式:1=1²;1+3=2²;1+3+5=3²;……
观察下列各式,2的平方减1等于1乘3
观察下列各式:(x-1)(x+1)=
观察下列各式:1/1*2=1/1-1/2,1/2*3=1/2-1/3,1/3*4=1/3-1/4.
观察下列各式,1/1*2=1-1/2 1/2*3=1/2-1/3,1/3*4=1/3-1/4...
观察下列各式1/1x2=1-1/2,1/2x3=1/2-1/3,1/3x4=1/3-1/4……
观察下列各式:1x2/1=1-2/1;2x3/1=2/1-3/1;3x4/1=3/1-4/1.