作业帮 > 数学 > 作业

1.三角形ABC中,已知向量AB*向量AC=9,sinB=cosA*sinC,面积S三角形abc=6,求三角形ABCd三

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 22:41:15
1.三角形ABC中,已知向量AB*向量AC=9,sinB=cosA*sinC,面积S三角形abc=6,求三角形ABCd三边长.
2.设向量a、向量b是两个不共线的非零向量(t属於R).(1).记向量OA=向量a,向量OB=t,向量OC=1/3(向量a+向量b),当实数t为何值时,A、B、C三点共线?(2).若|向量a|=|向量b|=1,且向量a与向量b夹角为120度,那麽实数x为何值时|向量a-x*向量b|的值最小?
1.三角形ABC中,已知向量AB*向量AC=9,sinB=cosA*sinC,面积S三角形abc=6,求三角形ABCd三
1:
SinB=sin(A+C)=sinAcosC+sinCcosA
sinB=cosAsinC
Then SinAcosC=0
also SinA never=0
so Cos C=0
C=90
S=(1/2) AB*AC sinA=6
设T=VEC AB *VEC AC= AB*AC COS A=9
2S/T=tan A=4/3
Then cos A=3/5 (EASY)
又 C=90
THEN 3/5 *AB=AC
SO 3/5 AB*AB=9
AB=根号15
AC=3/5 AB= 3/5 根号15
BC=4/5 AB= 4/5 根号15
第二个问题看不大懂,实数T是怎么出来的?为什么!向量!OB会等于!实数!T