设{Xn}为一单调增加的数列,若它有一个子列收敛于a,证明当n趋向无穷时,Xn的极限为a
设{Xn}为一单调增加的数列,若它有一个子列收敛于a,证明当n趋向无穷时,Xn的极限为a
当n趋向于无穷时,xn的极限为a,证明当n趋向于无穷时,(x1+x2+x3+….+xn)/n的极限为a
设数列{Xn}有界且当n趋向于无穷大时,{Yn}极限为0,证明当n趋向于无穷大时Xn·Yn的极限为0
已知数列xn满足xn-xn^2=sin(xn-1/n),证明xn的趋向正无穷的极限为0
收敛数列的有界性证明数列{Xn}收敛,设当n趋于无穷时n=a,根据数列极限定义,对于堁E=1,存在正整数N,当n>N时,
设X1=a>0,Xn+1=1/2(Xn+1/Xn),利用单调有界准则证明数列{Xn}收敛,并求其极限.
若当n趋于无限大时,数列Xn的极限是a,如何证明|Xn|的极限等于|a|?
怎么理解“如果数列{Xn}收敛于a,那么它的任一子数列也收敛,且极限也是a"
数列xn单调递增,yn单调递减,lim(xn-yn)=2(n趋向于正无穷),证明Xn Yn 皆收敛.
已知数列Xn的极限为a,证明数列|Xn|的极限为|a|
设x1>0 x(n+1)=(a+xn)/(1+xn) n=1,2.讨论数列{xn}的收敛性 并在收敛时求其极限 其中a为
大学数学极限证明题证明若数列{Xn}收敛,则它为有界数列