作业帮 > 数学 > 作业

已知y=f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,都满足:f(a•b)=af(b)+bf(a).

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 14:22:42
已知y=f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,都满足:f(a•b)=af(b)+bf(a).
(1)求f(1)的值;
(2)判断y=f(x)的奇偶性,并证明你的结论.
已知y=f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,都满足:f(a•b)=af(b)+bf(a).
(1)由题意令a=b=1,可得f(1)=f(1)+f(1),∴f(1)=0
(2)y=f(x)是奇函数,下面证明:
令a=b=-1,可得f(1)=-f(-1)-f(-1),所以f(-1)=0;
令a=x,b=-1,所以f(-x)=x f(-1)-f(x)=-f(x);
∴y=f(x)是奇函数.