设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1
设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1
设n阶矩阵A满足A^2+A-3i=0 证明矩阵A-2I可逆,并求(A-2i )^-1
设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1
设方阵A满足方程A^2-2A+4I=0,证明A+I和A-3I都可逆,并求他们的逆矩阵.
设n阶矩阵A满足A^2+2A-3I=O,证明:A,A+2I都可逆,并求其逆.
设方阵A满足A^2 -A-2I=O,证明A为可逆矩阵,并求A^-1
设n阶方阵A满足A^2=3A,证明:A-4I可逆,并求出其逆矩阵
若N阶矩阵满足A*A-2A-4I=0,试证A+I可逆,并求(A+I)的逆矩阵
设方阵A满足A^2-A-2I=0,证明:(1)A和I-A都可逆,并求它们的逆矩阵(2)A+I和A-2I不同时可逆
若n阶矩阵A满足A的三次方等于3A(A-I),证明I-A可逆,并求(I-A)的逆矩阵
线性代数你矩阵设n阶矩阵A满足条件A^k=O,证明:I-A可逆,且()^(-1)=I+A+A^2+A^3+……+A^(k
若方阵A满足方程A平方-2A+3I=0,则A,A-3I都可逆,并求它们的逆矩阵,如何证明?