△ABC的两条高线分别为BE,CF点M为BC的中点的图
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:42:43
证明:∵AD为△ABC的中线,∴BD=CD,如图,在AD上截取DN=DB=DC,∵DE、DF分别为△ADB、△ADC的角平分线,∴∠1=∠2,∠3=∠4,在△BDE和△NDE中,BD=DN∠1=∠2D
是原题?有点不符合逻辑啊.已知条件太少,求不出∠2就不知道其它任何一个角的度数,是原题的话,那我可能逻辑能力不太强把,我看了半天这就是初二第一章的内容,可是你这条件太苛刻了,解不出.再问:没错啊,就是
过A作AH∥BE,且AH=BE,连接BH,则四边形AHBE是平行四边形,∴AE∥BH,且AE=BH,又AE=1/2AC∴BH=1/2AC,∵D、F是AB、BC的中点,∴DF∥AC,DF=1/2AC,∴
结果是3△BEC面积是△BAC的一半,即是6(两三角形同底BC,可分别过A、E向BC做高,E为中点,则高的比是2:1,面积同高比)△BEF面积=△BCF面积=½△BEC面积=3(由B做三
因为CD、BE分别是等腰三角形ABC的高线所以CD⊥AB,BE⊥AC所以△ADC和△AEB是直角三角形而∠DAC=∠EAB(公共角)AB=AC(已知)所以RT△ABE全等于RT△ACD(AAS)所以A
ad如何能平分∠abc?把已知条件写清楚,我给你做!
(应该加上“AD=BC”和“AD、BE交于G”的条件结论才成立)证明:因为AD、BE是高所以AD⊥BC,BE⊥AC所以∠CAD+∠C=∠CBE+∠C=90°所以∠CAD=∠CBE因为∠ADC=∠BDG
AD为三角形ABC的中线,可得:以BC边为底时,三角形ABD和三角形ACD同高,由三角形面积公式1/2*底*高可得,三角形ABD面积和三角形ACD面积相等,都等于6BE为三角形ABD的中线,和上面同理
证明:如图,连接EF,∵BE,CF分别是△ABC的中线,∴EF∥BC,EF=12BC,∴△EFG∽△BCG,∴GB:GE=GC:GF=BC:EF=2.
延长AMAN交BC的延长线于点PQ根据CDBE是角平分线及CD垂直APBE垂直AQ能得出△AMC≌△PMC△ANB≌△QNB那么MN分别是APAQ的中点MN为△APQ的中位线MN//PQ即MN//BC
只需要证明H是△DEF的内角平分线交点即可!由已知条件有B、D、H、F共圆C、D、H、E共圆所以∠FBH=∠FDH∠ECH=∠EDH因为△ABE∽△ACF所以∠FBH=∠ECH所以∠FDH=∠EDH其
延长AM交BC于G,延长AN交BC于H.因BE平分角ABC,AM⊥BE,故AM=MG,同理AN=NH,∴MN‖GH,即MN‖BC.
证明:在△ACD和△BCE中,AC=BC,∠ACD=∠BCE=120°,CD=CE∴△ACD≌△BCE∴∠CDA=∠CEB,AD=BE而EM=BE/2,DN=AD/2∴EM=DN在△CDN和△CEM中
证明:(1)∵△ADB,△AEC是等腰直角三角形∴AE=AC,AD=AB又∵AD⊥AB,AE⊥AC∴∠DAB=∠EAC=90°∴∠DAB+∠BAC=∠EAC+∠BAC即∠CAD=∠EAB∵AE=AC,
证明:(1)∵∠BDC=∠BEC=∠CDA=90°,∠ABC=45°,∴∠BCD=45°=∠ABC,∠A+∠DCA=90°,∠A+∠ABE=90°,∴DB=DC,∠ABE=∠DCA,∵在△DBH和△D
1.证明:因为AD、BE分别是BC、AC边上的高,所以角ADC=角BEC=90度,又因为角C=角C,所以三角形CDE相似于三角形CAB.2.因为三角形CDE相似于三角形CAB,所以DE/AB=CD/A
你画个钝角三角形ABC在按照题目的意思把高做出来然后你看1/2AD*BC=△ABC的面积另外1/2BE*AC=△ABC的面积即1/2AD*BC=1/2BE*AC所以AD*BC=BE*AC
解∵A=60°∴B+C=180°-A=180°-50°=130°∵BE平分ABC于CE平分角ABC相交于点E∴E=180°-0.5(B+C)=180°-0.5×130°=115°E为115°.
折叠后ED⊥AB则∠ADE=∠ADB=90,∠EAD=∠BAC∴⊿AED∽⊿ABC∴AD/AC=DE/BC∵BC=6,AC=8,根据勾股定理AB=10∴AD=AB=5DE=AD×BC÷AC=5×6÷8
1.∵CF平分∠ACB∴∠ACB=2∠3=80∴∠ABC=180-80-70=302.∵平分∴∠1+∠2+∠3=1/2(∠ABC+∠ACB+∠CAB)=903.∵BE、CF分别为ABC、∠ACB的平分