△abc中ab=ac=5,o在abshang,bc交⊙o
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:57:01
本题分两种情况:①下图左边的图时,AD为BC边上的高.由AB=2,AC=2,∠B=30°得,AD=ABsinB=2×0.5=1,∵sin∠ACD=AD:AC=1:2=22,∴∠ACD=45°=∠B+∠
楼主不急、1.作DH⊥AB,垂足为H,则∠EDH+∠E=90°∵DE⊥OD,∴∠ODH+∠EDH=90°∴∠E=∠ODH∵AD=DC,AC=8,∴AD=4在Rt△ADB中,BD=根号下AB^2-AD^
AO的长为√5方法为延长CM,BN形成平行四边形,利用勾股定理求解
证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,即AD是底边BC上的高又∵AB=AC,∴△ABC是等腰三角形,∴D是BC的中点;(2)∵∠CBE与∠CAD是DE所对的圆周角,∴∠CBE=∠CAD,
先证明三角形ABE、ACD全等:AB=AC,有一个公共角,各自有一个直角.这样就有角ABE=角ACD.等腰三角形两底角相等.这样角CBO=角BCO,可证明等腰.从全等可以得到AD=AE.公共边AO,各
1.∵O为BC中点∴OC=OB∵△ABC为等腰直角三角形∴OA=(1/2)BC∴OA=OB=OC2.连接OA∵△ABC为等腰直角三角形,且O为BC中点∴∠COA=∠B=45°∵AN=BMOA=OB∴△
证明:因为AB=AC,所以三角形ABC是等腰三角形;由
解题思路:本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△AB
(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=DC;(2)∵∠ABC=70°,∠ADB=90°,∴∠BAD=20°,∴BD的度数为40°,∵AB=A
角形ABC是等腰三角形,底边上的高h=√100-36=8三角形ABC的面积为48设三角形的内切圆的半径为x那么内切圆圆心到三角形ABC三边的距离都是x于是,1/2AB*x+1/2AC*x+1/2BC*
1,连接OE、OF、AO.因为AB、AC切圆O于F、E,所以OF⊥AB,OE⊥AC.E、F在圆O上,所以OF=OE.在直角三角形AFO和AEO中,AF=根号(AO^2-OF^2),AE=根号(AO^2
因为BD⊥AC,CE⊥AB,所以,角BEO=角CDO=90度,又因为OE=OD,角BOE=角COD,所以,三角形BOE全等三角形COD,所以,角EBO=角DCO,OB=OC,所以,角OBC=角OCB,
?这个题还要答?三条边都相等了,两个三角形还不相等
10°设∠B度数为X,AB=AC.∠C也为X∠DAE=180-2X-20因为AD=AE,∠AED=(180-∠DAE)/2=X+10∠AED是三角形ECD的外角,∠AED=∠CDE+∠C即∠CDE+X
如图由余弦定理得:cosB=AB2+BC2−AC22AB•BC=22+(1+3)2−(6)22×2×(1+3)=12,因为B∈(0,π),所以B=π3,故AD=ABsinπ3=2×32=3.故答案为:
(1)证明:连接AE,∵AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∵AB=AC,∴BE=CE,即点E为BC的中点;(2)∵∠COD=80°,∴∠DAC=12∠COD=40°,∵∠DAC+∠D
连接AO并延长交圆O于点E,连接BE,由上述结论可知AB•AC=AD•AE因为AB+AC=12,AB=x所以AC=12-x所以(12-x)•x=3×2y,所以y与x
应该是角CAB等于90度吧?BC=√(5²+12²)=√(25+144)=√169=13连CO,△ACO≌△DCO,CD=CA=5,BD=13-5=8△ABC∽△DBO,12:8=
容易推得△AEO相似△ACB又因为BC=5AC=12得AB=13设半径为xAO=AC-CO=12-x由相似得OE/BC=AO/ABx/5=(12-x)/1313x=60-5x18x=60x=10/3即
延长DE交圆O于F,连接CF,ADDF//AC=>∠ACF=180°-∠DFC而CD为直径,∴∠DFC=90°,∴∠ACF=90°∴ACFD为矩形,A,O,F三点共线连接AOF,交BC与N,则AN⊥B