△abc,ab=2 AC=3,角A=60 求sin2c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:31:20
△abc,ab=2 AC=3,角A=60 求sin2c
在△ABC中,已知向量2AB·AC=√3AB·AC=3BC²,求角A、B、C的大小

向量2AB·AC=√3AB·AC字母错了.两个字母完全一样,这是不可能的因为相同的话必须有一个是0,即只能是cosA=0得到A=90度但是3BC²=2AB·AC=0得到BC=0,错了.你看是

在△ABC中,AB=2,AC=2

本题分两种情况:①下图左边的图时,AD为BC边上的高.由AB=2,AC=2,∠B=30°得,AD=ABsinB=2×0.5=1,∵sin∠ACD=AD:AC=1:2=22,∴∠ACD=45°=∠B+∠

在△ABC中,已知2AB*AC(AB,AC为向量)=根号3*AB*AC AB,AC为向量的模)=3BC^2,求角A,B,

2AB*AC(AB,AC为向量)=根号3*AB*ACAB,AC为向量的模)====>cosA=√3/2===>A=30º根号3*AB*ACAB,AC为向量的模)=3BC^2====>cb=√

在△ABC中,已知2AB*AC(AB,AC为向量)=根号3*AB*AC (AB,AC为向量的模)=3BC^2,求角A,的

作图如下.有2bccosA=根号3倍bc=2a^2得cosA=根号3/2得A=π/6AC=3即b=3得a*a=3*根号3*c/2由余弦公式得c=(9*根号3加减3*根号11)/4S=bcsinA/2带

已知向量AB=(4,2),向量AC(3,4),则△ABC的面积为

根据向量的模公式[向量的模:若a=(x,y),则|a|2=a·a=x^2+y^2,∴|a|=√(x^2+y^2)],得|AB|=√(4^2+2^2)=√20=2√5,|AC|=√(3^2+4^2)=√

在△ABC中,AB=1,AC=2,求角C的最大值

尊敬的michalifu:您好.在三角形ABC中,只有当AB垂直於AC时,角C的值才最大,这时三角形ABC就是一个直角三角形,AB是直角边,AC是斜边,当对边和斜边之比为1:2时,这个角是30度.所以

平面向量的题目在△ABC中,已知2×向量(AB)·向量(AC)=根号(3)×AB×AC=3×BC²,求角A、B

∵2AB*AC=√3|AB|*|AC|∴AB*AC/(|AB|*|AC|)=√3/2即cosA=√3/2则角A=π/6所以C+B=5π/6又√3|AB|*|AC|=3|BC|²∴|AB|*|

在三角形ABC中,角A=120°,AB=3,AC=2求三角形ABC面积

你自己画个图好些.因为∠A=120°,所以这个三角形是钝角△.所以以AC为底边,你B为顶点做△ABC的高(这个高必在三角形的外面),交AC的延长线于点D,所以∠BAD=60°,所以在RT△BDA中,A

△ABC中若角A=30° AB=2√3 AC=2求△ABC的面积

由正弦定理得面积为:1/2AB*AC*sinA=1/2×2×2√3×1/2=√3再问:我打错是角B再答:AC/sinB=AB/sinC2/(1/2)=2根号3/sinCsinC=根号3/2C=60°或

在三角形ABC中,角B=30,AB=2根号3,AC=2,求ABC的面积

由正弦定理:AC/sinB=AB/sinC即:sinC=ABsinB/AC=2√3sin30°/2=√3/2可知:C=60°或C=120°当C=60°时,A=90°,则S△ABC=AB*AC/2=2√

在△ABC中,AB:AC=5:3,AB-AC=4厘米,求(1)AB、AC的长(2)求BC边长的范围

(1)由AB:AC=5:3,AB-AC=4厘米条件解出AB=10cm,AC=6cm(2)设AB=5x,则AC=3x.∵AB-AC=4,∴x=2,∴AB=10,AC=6,∴4cm<BC<16cm.

△ABC中,AB=AC,

在三角形AEC中利用余弦公式求出CE与AC的关系.再根据三角形BEC周长为20,BC=9,即可求出BE长度从而三角形ABC的周长=AC+AB+BC=4BE+BC即可求出!

如图,三角形ABC中,角B=2角C,求证AC*AC=AB*AB+AB*BC

由余弦定理cosB=(AB^2+BC^2-AC^2)/2AB*BC=2cosC^2-1COSC=(BC^2+AC^2-AB^2)/2AC*BC化简后可以得到

在△ABC中,已知2向量AB*向量AC=√ 3|向量AB|*|向量AC|=3BC²,求角A,B,C的大小

由2向量AB*向量AC=√3|向量AB|*|向量AC|,得cosA=向量AB*向量AC/|向量AB|*|向量AC|=√3/2,所以A=30.由√3|向量AB|*|向量AC|=3BC²,利用正

如图所示:在△ABC中,AB=4 AC=3 角平分线AD=2 求三角形面积

作BE∥AC交AD延长线于E,易证△ABE为等腰三角形,BE=AB=4,△BDE∽△CDA,求得DE=8/3,因此AE=14/3,cos∠BAE=(4^2+(14/3)^2-4^2)/2*4*14/3

在△ABC中,AB=2,AC=6

如图由余弦定理得:cosB=AB2+BC2−AC22AB•BC=22+(1+3)2−(6)22×2×(1+3)=12,因为B∈(0,π),所以B=π3,故AD=ABsinπ3=2×32=3.故答案为:

在△ABC中,AB=3,AC=2,BC=10,则AB•AC=(  )

∵由余弦定理得cosA=9+4−102×3×2,∴cos∠CAB=14,∴AB•AC=3×2×14=32,故选D

在△ABC中,AB=2,AC=3,BC=4,求△ABC的面积

根据余弦定理COSA=(AC平方+AB平方-BC平方)/2*AC*AB得COSA=-1/4根据SINA平方=1-COSA平方得SINA=(二次根号下15)/4(因为在三角形里正弦值都是正数)S=1/2

在△ABC中,AB=2,AC=3,BC=4,则△ABC的面积是

cosA=(2^2+3^2-4^2)/2*2*3=-1/4sinA=根号15/4S=1/2*2*3*根号15/4=3(根号15/4)