△abc,ab=2 AC=3,角A=60 求sin2c
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:31:20
向量2AB·AC=√3AB·AC字母错了.两个字母完全一样,这是不可能的因为相同的话必须有一个是0,即只能是cosA=0得到A=90度但是3BC²=2AB·AC=0得到BC=0,错了.你看是
本题分两种情况:①下图左边的图时,AD为BC边上的高.由AB=2,AC=2,∠B=30°得,AD=ABsinB=2×0.5=1,∵sin∠ACD=AD:AC=1:2=22,∴∠ACD=45°=∠B+∠
2AB*AC(AB,AC为向量)=根号3*AB*ACAB,AC为向量的模)====>cosA=√3/2===>A=30º根号3*AB*ACAB,AC为向量的模)=3BC^2====>cb=√
作图如下.有2bccosA=根号3倍bc=2a^2得cosA=根号3/2得A=π/6AC=3即b=3得a*a=3*根号3*c/2由余弦公式得c=(9*根号3加减3*根号11)/4S=bcsinA/2带
根据向量的模公式[向量的模:若a=(x,y),则|a|2=a·a=x^2+y^2,∴|a|=√(x^2+y^2)],得|AB|=√(4^2+2^2)=√20=2√5,|AC|=√(3^2+4^2)=√
尊敬的michalifu:您好.在三角形ABC中,只有当AB垂直於AC时,角C的值才最大,这时三角形ABC就是一个直角三角形,AB是直角边,AC是斜边,当对边和斜边之比为1:2时,这个角是30度.所以
∵2AB*AC=√3|AB|*|AC|∴AB*AC/(|AB|*|AC|)=√3/2即cosA=√3/2则角A=π/6所以C+B=5π/6又√3|AB|*|AC|=3|BC|²∴|AB|*|
你自己画个图好些.因为∠A=120°,所以这个三角形是钝角△.所以以AC为底边,你B为顶点做△ABC的高(这个高必在三角形的外面),交AC的延长线于点D,所以∠BAD=60°,所以在RT△BDA中,A
由正弦定理得面积为:1/2AB*AC*sinA=1/2×2×2√3×1/2=√3再问:我打错是角B再答:AC/sinB=AB/sinC2/(1/2)=2根号3/sinCsinC=根号3/2C=60°或
由正弦定理:AC/sinB=AB/sinC即:sinC=ABsinB/AC=2√3sin30°/2=√3/2可知:C=60°或C=120°当C=60°时,A=90°,则S△ABC=AB*AC/2=2√
(1)由AB:AC=5:3,AB-AC=4厘米条件解出AB=10cm,AC=6cm(2)设AB=5x,则AC=3x.∵AB-AC=4,∴x=2,∴AB=10,AC=6,∴4cm<BC<16cm.
在三角形AEC中利用余弦公式求出CE与AC的关系.再根据三角形BEC周长为20,BC=9,即可求出BE长度从而三角形ABC的周长=AC+AB+BC=4BE+BC即可求出!
由余弦定理cosB=(AB^2+BC^2-AC^2)/2AB*BC=2cosC^2-1COSC=(BC^2+AC^2-AB^2)/2AC*BC化简后可以得到
由2向量AB*向量AC=√3|向量AB|*|向量AC|,得cosA=向量AB*向量AC/|向量AB|*|向量AC|=√3/2,所以A=30.由√3|向量AB|*|向量AC|=3BC²,利用正
作BE∥AC交AD延长线于E,易证△ABE为等腰三角形,BE=AB=4,△BDE∽△CDA,求得DE=8/3,因此AE=14/3,cos∠BAE=(4^2+(14/3)^2-4^2)/2*4*14/3
如图由余弦定理得:cosB=AB2+BC2−AC22AB•BC=22+(1+3)2−(6)22×2×(1+3)=12,因为B∈(0,π),所以B=π3,故AD=ABsinπ3=2×32=3.故答案为:
∵由余弦定理得cosA=9+4−102×3×2,∴cos∠CAB=14,∴AB•AC=3×2×14=32,故选D
根据余弦定理COSA=(AC平方+AB平方-BC平方)/2*AC*AB得COSA=-1/4根据SINA平方=1-COSA平方得SINA=(二次根号下15)/4(因为在三角形里正弦值都是正数)S=1/2
cosA=(2^2+3^2-4^2)/2*2*3=-1/4sinA=根号15/4S=1/2*2*3*根号15/4=3(根号15/4)