∫lnx^2 x^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:16:22
x/(x-lnx)做法:分子化为(x-lnx)+(1-x),这样积分化为2个,∫(x-lnx)/(x-lnx)^2dx+∫(1-x)/(x-lnx)^2dx=∫1/(x-lnx)dx+∫xd1/(x-
原式=-∫lnxd(1/x)=-lnx*1/x+∫1/x*dlnx【分部积分】=-lnx/x+∫1/x²dx=-lnx/x-1/x+C再问:答案是错的哦,还有=-∫lnxd(1/x)不是应该
∫e^(-2x²+lnx)dx=∫e^(-2x²)*e^lnxdx=∫e^(-2x²)*xdx=∫e^(-2x²)d(x²/2)=(1/2)(-1/2
原式=[(-a)+(-6b)]²=(-a)²+2(-a)(-6b)+(-6b)²=a²+12ab+36b²原式=[-1×(a+6b)]²=(
∫x^2(lnx+1)dx=1/3*∫(lnx+1)d(x^3)=1/3*x^3*(lnx+1)-∫1/3*x^3d(lnx+1)=1/3*x^3*(lnx+1)-∫1/3*x^2dx=1/3*x^3
运用分部积分法可∫lnx/x²dx,首先将1/x²推进d里,这是积分过程=∫lnxd(-1/x),然后互调函数位置=-(lnx)/x+∫1/xd(lnx),将lnx从d里拉出来,这
1-lnx=(x-lnx)-x(1-1/x)凑微分∫[(1-lnx)/(x-lnx)^2]dx=x/(x-lnx)+C再问:过程能不能详细点再答:(x-lnx)'=1-1/x,∫[(1-lnx)/(x
求导得[1+2x^2ln2-2lnx-2^(x+1)]/(x^3)
∫(lnx)^3/x^2dx=∫(lnx)^3d(-1/x)=-(lnx)^3/x+∫3(lnx)^2(1/x)(1/x)dx=-(lnx)^3/x-3∫(lnx)^2d(1/x)=-(lnx)^3/
S[(x*lnx)^(3/2)]*(lnx+1)dx=S[(x*lnx)^(3/2)]*(xlnx)'dx=S[(x*lnx)^(3/2)]*d(xlnx)=1/(1+3/2)*(x*lnx)^(1+
(1+lnx)^2是在分子上吗?原式=∫(1+lnx)^2d(1+lnx)=(1+lnx)^3/3+C.若是分母,则原式=∫(1+lnx)^(-2)d(1+lnx)=-1/(1+lnx)+C.
方法是先将下方的x放到上面得到dlnx,然后通过+1,-1分开算出得数∫lnx/(x*根号下1+lnx)dx=∫lnx/√(1+lnx)dlnx=∫√(1+lnx)dlnx-∫1/√(1+lnx)dl
当中那个式子有问题,应该等于=-∫(ln(x+1)-lnx)d(ln(x+1)-lnx),有个负号再问:恩我主要想知道最后答案是怎么得出来的再答:有个公式:∫f(x)d[f(x)]=[f(x)]^2/
x/(x-lnx)做法:分子化为(x-lnx)+(1-x),这样积分化为2个,∫(x-lnx)/(x-lnx)^2dx+∫(1-x)/(x-lnx)^2dx=∫1/(x-lnx)dx+∫xd1/(x-
用两次分部积分法就可以了,答案就是1/2*x^2*{(lnx)^2-lnx-1/2}+C再问:能不能给出详细解答,谢谢再答:我现在没空了啊,总之这个答案是对的
采用分部积分了!因为∫[dx/(lnx-x)+(1-x)dx/(x-lnx)^2]=∫dx/(lnx-x)+∫x(1/x-1)dx/(x-lnx)^2=∫dx/(lnx-x)+∫xd(lnx-x)/(
上下同时处以x^2,∫[(1+lnx)/x^2]/[(x+lnx)/x]^2dx=∫1/[(x+lnx)/x]^2d[(x+lnx)/x],这就变成了∫1/ada型,结果为ln|a|+c,将a换掉即可
∫1+x^2ln^2x/xlnxdx=∫1/xlnxdx+∫xlnxdx分开积分就行了.
有分部积分知识可知:∫x(lnx)²dx =(1/2)∫(lnx)²d(x²)=x²(lnx)²/2—∫xlnxdx=x²(lnx)
(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出