∩是由z=√x2 y2和z=1围成的立体
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:59:18
z=1+√3i 代数法如下图: 几何法:由复数的几何意义可知,z表示的点与点(-1,-√3)关于原点对称则,z表示的点为(1,√3)所以,z=1+√3i
(z+i)/(z-i)取barbar(z+i)/(z-i)=(barz-i)/(barz+i)(因为|Z|=1,所以z*barz=1)=(1/z-i)/(1/z+i)=(1-iz)/(1+iz)=(i
设z=a+bi|z-4|=|z-4i|,z+(14-z)/(z-1)是实数所以(a-4)^2+b^2=a^2+(b-4)^2a^2-8a+16+b^2=a^2+b^2-8b+16-8a=-8ba=b又
复数z满足|z|=1z对应的点Z(x,y)在单位圆上|z-1-√3i|=|z-(1+√3i)|表示单位圆上的点Z到点定A(1,√3)的距离|ZA||ZA|max=|AO|+1=2+1=3|ZA|min
你好:两边同时对x求偏导数(z-x(偏z/偏x))/z2=1/z(偏z/偏x)所以偏z/偏x=z/(x+z)
对方程e^(-xy)+2z-e^z=2两边微分,有:e^(-xy)*d(-xy)+2*dz-e^z*dz=0-e^(-xy)*(x*dy+y*dx)+2*dz-e^z*dz=0移项,得:(e^z-2)
(1)当z=(-1/2)+(√3/2)i时,z²=(-1/2)-(√3/2)i.1+z=(1/2)+(√3/2)i.1+z²=(1/2)-(√3/2)i.故z²/(1+z
设z=a+bi,则Z=a-bi,z+Z=4,2a=4,a=2,z*Z=8,即(2+bi)(2-bi)=8,4+b^2=8,b=2或-2.代入可知,结果为正负i.选D
设F(x,y,z)=z^2-2xyz-1则Fx=-2yz,Fy=-2xz,Fz=2z-2xyαz/αx=-Fx/Fz=-(-2yz)/(2z-2xy)=yz/(z-xy)αz/αy=-Fy/Fz=xz
设z=x+yi(x、y属于R)PS:这句话一定要写,以后高考要按此来给分!z^2+2z=x^2-y^2+2xyi+2x+2yi=(x^2-y^2+2x)+(2xy+2y)iPS:实部归实部,虚部归虚部
第一个是对的!其余两个都不对!错在:将x^2+y^2=z代入积分式.因为在立体内部x^2+y^2
用柱坐标,积分区域:0≤r≤z,0≤t≤2π,1≤z≤2.∫∫∫z^2dxdydz=∫z^2dz∫dt∫rdr=∫z^2dz∫dt(z^2/2)=π∫z^4dz=π[z^5/5]=31π/5.
1、隐函数对x求导得1+az/ax+yz+xy*az/ax=0,故az/ax=-(1+yz)/(1+xy);F对x求导得aF/ax=e^x*y*z^2+e^x*y*2z*az/ax;当x=0,y=1时
积分域是单叶双曲面与两平面所围成.记为Q.它在第一卦限的部分记为Q1由于区域的对称性和函数的奇偶性,可知,∫∫∫(x+y)dV=0.即以下只要计算:∫∫∫z^2)dV.再由对称性:∫∫∫(x+y+z^
z=x+yi则x+yi-x+yi+√(x²+y²)=12yi+√(x²+y²)=1所以2y=0且√(x²+y²)=1所以x=±2,y=0所以
z=a+bi,a,b是实数则a^2+b^2=11/z=1/(a+bi)=(a-bi)/(a^2+b^2)=a-bi所以z+1/z=2az≠±i所以a≠0所以z+1/z≠0所以z+1/z=(z^2+1)
设z=a+bi,Z=a-bi∵z+Z=2a=4∴a=2∵z*Z=a^2+b^2=8∴b^2=4,b=±2①当z=2+2i,Z=2-2i时Z/z=(1-i)/(1+i)=-i②当z=2-2i,Z=2+2
设z=cost+isint--->|z|=1,1/z=z~=cost-isint1)证:(z+1)/(z-1)=[(cost+1)+isint]/[(sint-1)+isint]={2[cos(t/2
a=1;z=1+iz+1/z=1+1/z=1+1/1-z=1+z/2+1=3/2+1/2z再问:可以明白一点不〜谢了!
z+1\z为实数z+1/z=z'+1/z'zzz'+z'=zz'z'+z(z-z')(zz'-1)=0而z是虚数,z≠z',因此(z-z')(zz'-1)=0zz'=1|z|=1其中z'表示z的共轭