∑an=bn,求证
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:22:25
(n+1)=[a(n+1)-2]/[a(n+1)+1]=[(3an+2)/(an+2)-2]/[(3an+2)/(an+2)+1]=[3an+2-2an-4]/[3an+2an+2]=[an-2]/[
缺少条件,{an}为正项数列,否则log3(an)无意义,题目没法解.证:数列为正项数列,公比q>0a(n+1)/an=qb(n+1)-bn=log3[a(n+1)]-log3(an)=log3[a(
S(n+1)-Sn=4(an-a(n-1))即a(n+1)=4(an-a(n-1))b(n+1)=a(n+1)-2an=2(an-2a(n-1))=2bn既然你已经作出第一问,我就直接跳过S2=4a1
a(n+1)=(2an-1)/(an+4)a(n+1)+1=(2an-1)/(an+4)+1=(3an+3)/(an+4)1/[a(n+1)+1]=(an+4)/[3(an+1)]=(1/3)[1+3
(an+bn)^2
∵{An}是等差数列∴An-A(n-1)=d(d为公差)∵Bn=kAn+m∴B(n-1)=kA(n-1)+m∴Bn-B(n-1)=kAn+m-[kA(n-1)+m]=k[An-A(n-1)]=kd这个
A(n+1)=2An+KA(n)=2A(n-1)+KA(n+1)-An=2[An-A(n-1)]Bn=A(n+1)-AnBn-1=An-A(n-1)Bn=2B(n-1){Bn}为等比数列
1.bn=(3an-2)/(an-1)an=(bn-2)/(bn-3)a(n+1)=[b(n+1)-2]/[b(n+1)-3]a(n+1)=(4an-2)/(3an-1)3a(n+1)an-a(n+1
首先等差数列的通项公式是关于n的一次式bn是等差数列,设bn=A*n+B则:a1+a2+a3+a4+...+an=n(A*n+B)=A(n^2)+Bna1+a2+a3+a4+...+a(n-1)=A(
证:a(n+1)=2an/(an+1)1/a(n+1)=(an+1)/(2an)=(1/2)(1/an)+1/21/a(n+1)-1=(1/2)(1/an)-1/2=(1/2)(1/an-1)[1/a
这是柯西不等式的变形.a1/b1+a2/b2+...+an/bn>=(a1+a2+...+an)^2/a1b1+a2b2+...+anbn即:[(√a1/√b1)^2+(√a2/√b2)^2+…+(√
(1)证明:an-2=2-4/a(n-1)=(2a(n-1)-4)/a(n-1)1/(an-2)=a(n-1)/(2a(n-1)-4)=1/2*a(n-1)/(a(n-1)-2)=1/2[1+2/(a
设an公差为d那么通过等差数列定义,只要bn-b(n-1)是常数bn-b(n-1)=an+a(n+1)-[a(n-1)+an]=a(n+1)-a(n-1)=2d所以bn是等差数列.
设an=a1+(n-1)d,bn=an+a(n-1)=a1+(n-1)d+a1+nd=2a1+(2n-1)dbn为首项为2a1-d,公差为2d的等差数列
∵数列{an}是等差数列,∴an-a(n-1)=d∵bn/b(n-1)=2^an/[2^a(n-1)]=2^[an-a(n-1)]=2^d∴{bn}是等比数列,公比为2^d
Sn+an=nS(n-1)+a(n-1)=n-1an+an-a(n-1)=12an=a(n-1)+1bn=an-12an-2=a(n-1)-12bn=b(n-1)bn=(1/2)b(n-1)故等比a1
证明:假设{Cn}为公比为q的等比数列设{an}的公比为q1,{bn}的公比为q2,则Cn=C1*q^(n-1)而C1=a1+b1,故Cn=a1*q^(n-1)+b1*q^(n-1)又因为an=a1*
{bn}是等差数列,设其公差为d,则b(n+1)-bn=d.bn=(a1+a2+a3+…+an)/n,nbn=a1+a2+a3+…+an,(n+1)b(n+1)=a1+a2+a3+…+an+a(n+1
An=nBn-nBn-1,数列收敛必有极限.对于任意给定的ε1,存在N1使得,A为极限Bn=A+α;对于任意给定的ε2,存在N2使得Bn-1=A+β取N=max{N1,N2}使得An=n{α+(-β)
B(n+1)-Bn=A(n+1)+A(n+2)-An-A(n+1)=A(n+2)-An因为An是等差数列,所以A(n+2)-An=2d是一个与n无关的常数,所以Bn是等差数列