∑(n 3n-1)^2n-1的敛散性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:12:59
/>前n项和Sn=1-1/√2+1/√2-1/√3+...+1/√n-1/√n+1=1-1/√n+1趋于1 级数收敛于1∑(-1)^n1/3^n=∑(-1/3)^n=(-1/3)/(1+1/
f(x)=xln(1-a/x),f'(x)=ln(1-a/x)+a/(x-a),f''(x)=-a^2/[x(x-a)^2]
(1)令S(x)=∑(n=0→无穷)n*x^n/(n+1)则S(x)=x/2+2/3*x^2+3/4*x^3+···+n/(n+1)*x^n+···(1)两边同乘x:xS(x)=1/2*x^2+2/3
使用比值比较法易知幂级数的收敛域为(-1再问:怎么从第二步得到最后结果的?再答:ln(1+x)=x-x^2/2+x^3/3-x^4/4+……ln(1+x²)=x²-(x²
用数学归纳法证明.(i)当n=1时,C(01)+C(11)=2=2^1所以等式成立.(ii)假设n=k时,(k≥1,k∈N*)时等式成立即:C(0k)+C(1k)+C(2k)+...+C(k-1k)+
∵anbn=2an2bn=a1+a2n−1b1+b2n−1=(2n−1)(a1+a2n−1) 2(2n−1)(b1+b2n−1) 2=s2n−1T2n−1∴anbn=2(2n−1)
1/(n^2+1)+2/(n^2+2^2)+...+n/(n^2+n^2)=1/n((1/n)/(1+(1/n)^2)+(2/n)/(1+(2/n)^2)+...+(n/n)/(1+(n/n)^2)分
e^(-x^2)(负号在x^2外面)你去看看e^x的幂级数展开,然后作变量代换(因为e^x是在整个实轴上展开的,所以不必担心变量代换以后收敛半径的问题)
设等差数列{an}和{bn}的公差分别为d1 和d2,则由题意可得S1T1=a1b1=2×13×1+1=12,即2a1=b1.再由S2T2=a1+a2b1+b2=2a1+d12b1+d2=2
达伦贝尔判别法,结果是e/3再问:可以给我写一下详细的步骤吗?实在是辛苦了,我不太懂。如果能用图画写出来,发图就实在是太太感谢了再答:
比值法,U(n+1)/Un=3/[(1+1/n)^n]→3/e>1(n→∞),所以级数发散
根据比值判断法,(n+1)项/n项以n趋近于无穷大的比值为1,所以级数可能收敛也可能发散
只需要看后一项与前一项比值【2^n*n!/n^n】/【2^(n-1)*(n-1)!/(n-1)^(n-1)】=2n*(n-1)^(n-1)/n^n=2(n-1)^(n-1)/n^(n-1)=2【(n-
等于呀,你把后面的算式一道前面来n(n+2)(n+4)+1/6)(n-1)n(n+2)(n+4)=n(n+2)(n+4)[1+1/6(n-1)]=1/6n(n+2)(n+4)(n+5)
先证明对于任意x≠0,1+xf(0)=1>0,即1+x
1/2*f(1/2)=(1/2)^2+3*(1/2)^3...+(2n-1)*(1/2)^(n+1)f(1/2)-1/2*f(1/2)=1/2+2*(1/2)^2+2*(1/2)^3+...+2*(1
应该是x^n/[n(n-1)]吧先两次求导得f''(x)=1+x+x^2+x^3+……=1/(1-x)(|x|
分子分母同时乘以二化为[∞∑n=1][2^n×x^n]/2(n!),整理[∞∑n=1]﹙2x﹚^n/(n!)×1/2,由公式e^x=[∞∑n=1]x^n/(n!)可得1/2e^2x