∑(n 3n-1)^2n-1的敛散性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:12:59
∑(n 3n-1)^2n-1的敛散性
判定级数∞∑n=1 [(-1)^n-1]*(3^n)(x^2n)/n]的敛散性.

/>前n项和Sn=1-1/√2+1/√2-1/√3+...+1/√n-1/√n+1=1-1/√n+1趋于1 级数收敛于1∑(-1)^n1/3^n=∑(-1/3)^n=(-1/3)/(1+1/

证明不等式:(1/n)的n次方+(2/n)的n次方+……+(n/n)的n次方

f(x)=xln(1-a/x),f'(x)=ln(1-a/x)+a/(x-a),f''(x)=-a^2/[x(x-a)^2]

求级数∑(n=0→无穷)n*x^n/(n+1)的和函数,并计算∑(n=1→无穷)(-1)^n*n/((n+1)*2^(n

(1)令S(x)=∑(n=0→无穷)n*x^n/(n+1)则S(x)=x/2+2/3*x^2+3/4*x^3+···+n/(n+1)*x^n+···(1)两边同乘x:xS(x)=1/2*x^2+2/3

求幂级数∑(∞,n=1) [(-1)^n*x^(2n)/n]的和函数

使用比值比较法易知幂级数的收敛域为(-1再问:怎么从第二步得到最后结果的?再答:ln(1+x)=x-x^2/2+x^3/3-x^4/4+……ln(1+x²)=x²-(x²

排列组合 C(0 n)+C(1 n)+C(2 n)+...+C(n-1 n)+C(n n)(n∈N*)的值,并证明你的结

用数学归纳法证明.(i)当n=1时,C(01)+C(11)=2=2^1所以等式成立.(ii)假设n=k时,(k≥1,k∈N*)时等式成立即:C(0k)+C(1k)+C(2k)+...+C(k-1k)+

等差数列{an},{bn}的前n项和分别为Sn,Tn,若SnTn=2n3n+1,则anbn=(  )

∵anbn=2an2bn=a1+a2n−1b1+b2n−1=(2n−1)(a1+a2n−1) 2(2n−1)(b1+b2n−1) 2=s2n−1T2n−1∴anbn=2(2n−1)

求1/n^2+1+2/n^2+2+...+n/n^2+n^2的极限,

1/(n^2+1)+2/(n^2+2^2)+...+n/(n^2+n^2)=1/n((1/n)/(1+(1/n)^2)+(2/n)/(1+(2/n)^2)+...+(n/n)/(1+(n/n)^2)分

幂级数 (∞∑n=0) {((-1)^n)*(x^2n)}/n!的和函数~

e^(-x^2)(负号在x^2外面)你去看看e^x的幂级数展开,然后作变量代换(因为e^x是在整个实轴上展开的,所以不必担心变量代换以后收敛半径的问题)

由正数组成的等差数列{an}和{bn}的前n项和分别为Sn和Tn,且SnTn=2n3n+1,则a5b7=(  )

设等差数列{an}和{bn}的公差分别为d1 和d2,则由题意可得S1T1=a1b1=2×13×1+1=12,即2a1=b1.再由S2T2=a1+a2b1+b2=2a1+d12b1+d2=2

微积分 判断级数∑(n=1,∞)n^n/3^n*n!的收敛性

达伦贝尔判别法,结果是e/3再问:可以给我写一下详细的步骤吗?实在是辛苦了,我不太懂。如果能用图画写出来,发图就实在是太太感谢了再答:

判断级数 ∑ (∝ n=1) 3^n*n!/n^n的敛散性

比值法,U(n+1)/Un=3/[(1+1/n)^n]→3/e>1(n→∞),所以级数发散

判断级数∑2^n /n^n (n=1到∞)的敛散性

根据比值判断法,(n+1)项/n项以n趋近于无穷大的比值为1,所以级数可能收敛也可能发散

判断级数的敛散性∑ (∞,n=1)2^n * /n^n

只需要看后一项与前一项比值【2^n*n!/n^n】/【2^(n-1)*(n-1)!/(n-1)^(n-1)】=2n*(n-1)^(n-1)/n^n=2(n-1)^(n-1)/n^(n-1)=2【(n-

Sn=n(n+2)(n+4)的分项等于1/6[n(n+2)(n+4)(n+5)-(n-1)n(n+2)(n+4)]吗?

等于呀,你把后面的算式一道前面来n(n+2)(n+4)+1/6)(n-1)n(n+2)(n+4)=n(n+2)(n+4)[1+1/6(n-1)]=1/6n(n+2)(n+4)(n+5)

证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n

先证明对于任意x≠0,1+xf(0)=1>0,即1+x

2^n/n*(n+1)

1/2*f(1/2)=(1/2)^2+3*(1/2)^3...+(2n-1)*(1/2)^(n+1)f(1/2)-1/2*f(1/2)=1/2+2*(1/2)^2+2*(1/2)^3+...+2*(1

求幂级数 ∑(n=2,∝) [n(n-1)] x^n的和函数

应该是x^n/[n(n-1)]吧先两次求导得f''(x)=1+x+x^2+x^3+……=1/(1-x)(|x|

幂级数[∞∑ n=1] [2^(n-1) x^n] / (n!)的和函数

分子分母同时乘以二化为[∞∑n=1][2^n×x^n]/2(n!),整理[∞∑n=1]﹙2x﹚^n/(n!)×1/2,由公式e^x=[∞∑n=1]x^n/(n!)可得1/2e^2x