2^n/n*(n+1)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 23:49:32
2^n/n*(n+1)
1/2*f(1/2)=(1/2)^2+3*(1/2)^3...+(2n-1)*(1/2)^(n+1)
f(1/2)-1/2*f(1/2)=1/2+2*(1/2)^2+2*(1/2)^3+...+2*(1/2)^n-(2n-1)*(1/2)^(n+1)
可得1/2*f(1/2)=1/2+1/2+(1/2)^2+(1/2)^3+……+(1/2)^(n-1)-(2n-1)*(1/2)^(n+1)
即
f(1/2)=[1+(1/2)^2+(1/2)^3+……+(1/2)^(n-1)-(2n-1)*(1/2)^(n+1)]*2
=2+[(1/2)+(1/2)^2+……+(1/2)^(n-2)-(2n-1)*(1/2)^n]
而[(1/2)+(1/2)^2+……+(1/2)^(n-2)]lt;1
故f(1/2)lt;3
f(1/2)-1/2*f(1/2)=1/2+2*(1/2)^2+2*(1/2)^3+...+2*(1/2)^n-(2n-1)*(1/2)^(n+1)
可得1/2*f(1/2)=1/2+1/2+(1/2)^2+(1/2)^3+……+(1/2)^(n-1)-(2n-1)*(1/2)^(n+1)
即
f(1/2)=[1+(1/2)^2+(1/2)^3+……+(1/2)^(n-1)-(2n-1)*(1/2)^(n+1)]*2
=2+[(1/2)+(1/2)^2+……+(1/2)^(n-2)-(2n-1)*(1/2)^n]
而[(1/2)+(1/2)^2+……+(1/2)^(n-2)]lt;1
故f(1/2)lt;3
2^n/n*(n+1)
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
化简(n+1)(n+2)(n+3)
n(n+1)(n+2)数列求和
n(n+1)(n+2)等于多少?
化简[n^2+(n+1)^2]/n(n+1) 化简额
阶乘(2n-1)!=(2n)!/(2^n*n!
计算:n(n+1)(n+2)(n+3)+1
lim[(n+3)/(n+1))]^(n-2) 【n无穷大】
+(n-1)!+(n-2)!+.+(n-n)!等于什么?
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n n)) 当N越于无穷大