[ (X1-M)^2 ...(Xn-M)^2 ] n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:08:26
[ (X1-M)^2 ...(Xn-M)^2 ] n
证明n趋向无穷,极限存在,X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0),x1会不会小于根号a

证明:∵X1>0,Xn+1=(1/2)(Xn+a/Xn)(n=1,2...,a>0)==>Xn>0(n=1,2...,)(应用数学归纳法证明)==>Xn+1=(1/2)(Xn+a/Xn)≥(1/2)(

已知 x1 x2..xn均为整数求证:x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn≥√x1+√x2+

x1x2..xn均为整数应是x1x2..xn均为正数吧,由均值不等式得:(x2/√x1)+√x1≥2√x2,(x3/√x2)+√x2≥2√x3,...(x1/√xn)+√xn≥2√x1,把上面n个不等

方差公式s^2=1/n[(x1-m)^2+(x2-m)^2+...+(xn-m)^2]

n表示样本数,即样本中有n个个体.X表示样本中第个个体的值,即x1表示第1个个体的值,x2表示第2个个体的值,xn表示第n个个体的值.

记实数x1,x2.xn中的最大数为max{x1,x2.xn}.最小数为min{x1,x2.xn}

必要不充分必要性:∵三角形ABC为等边三角形max{a/b,b/c,c/a}=min{a/b,b/c,c/a}=1∴I=1不充分充:存在不为等边三角形的三角形ABC,其中a=3,b=2,c=2使得l=

设0Xn=(Xn-1)*[1-(Xn-1)]*[1-(Xn-1)-(Xn-1)^2]=-----=X1*[1-X1]*[

收敛好证,极限难求啊!点击图片有收敛证明

求行列式,第一行x1-m,x2,x3.xn;第二行x1,x2-m,x3.xn;第n行x1,x2,x3.xn-m

x1-mx2x3...xnx1x2-mx3...xn......x1x2x3...xn-mc1+c2+...+cn--所有列加到第1列∑x1-mx2x3...xn∑x1-mx2-mx3...xn...

数列{Xn}的递推公式给出Xn+1=0.5(Xn+9/Xn),X1=1求{Xn}通项

X(n+1)-3=(Xn-3)^2/(2*Xn);X(n+1)+3=(Xn+3)^2/(2*Xn);[X(n+1)-3]/[X(n+1)+3]=((Xn-3)/(Xn+3))^2(Xn-3)/(Xn+

(x1+x2+x3+...+xn-1)(x2+x3+x4+...+xn)-(x2+x3+x4+...+xn-1)(x1+

令x2+x3+...+xn-1=A(x1+x2+x3+...+xn-1)(x2+x3+x4+...+xn)-(x2+x3+x4+...+xn-1)(x1+x2+x3+...+xn)=(x1+A)(A+

设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|

x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|

证明极限存在X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0)

首先,Xn+1=1/2(Xn+a/Xn)>=1/2*2√a=√a则无论X1>0的值如何(所以可假定X1>√a),Xn(n=2,3...)的值都大于或等于√a如果X1=√a可以确定,Xn为常数列,其极限

(x1+x2+...+xn)^2

这个不等式恒成立用柯西不等式便可证明出(x1^2+x2^2+x3^2+.+xn^2)*(1+1+1+.+1)>=(x1+x2+x3+.+xn)^2仅当x1=x2=x3=.=xn,等号成立所以这个不等式

X2/X1(X1+X2)+X3/(X1+X2)(X1+X2+X3)+.Xn/(x1+x2+...Xn-1)(X1+X2.

Xn/(x1+x2+...Xn-1)(X1+X2...+Xn)=1/(x1+x2+...+xn-1)-1/(x1+x2+...+xn-1+xn)所以原式=1/x1-1/(x1+x2)+1/(x1+x2

X1=1,Xn=1+Xn/(1+Xn),n=1,2…,求Xn

天啊,一看到数学符号我就超级头大.再问:尼玛!你……欠扁吧!再答:不好意思啊,我不是故意的,的确是看见那个有点头大,麻烦你不要说脏话好吗?再问:呵呵!不好意思!O(∩_∩)O再答:嗯,没事的,呵呵

,f(x1x2.xn)=(x1-x)2+(x2-x)2+(x3-x)2...+(xn-x)2 其中x=(x1+x2+.x

这题有些麻烦f(x1x2.xn)=∑(xi-x)^2=∑xi^2-2∑xix+∑x^2=∑xi^2-2x∑xi+nx^2=∑xi^2-nx^2=[(n-1)/n]∑xi^2-(2/n)∑(i

用琴森不等式证明((x1+x2+...+xn)/n)^(x1+x2+...+xn)

两边取自然对数,并同除以n,只要证明(x1+x2+...+xn)/n*log[(x1+..+xn)/n]

若样本X1、X2 .Xn的平均数为9 方差为2,则另一样本X1+2,X2+2.Xn+2的平均数为多少?方差为多少?

(x1+x2+……+xn)/n=9(x1+2+x2+2+……+xn+2)/n=[(x1+x2+……+xn)+2n]/2=(9n+2n)/n=11设最大数为xa,最小数为xb则另一样本最大数为xa,最小

数列{Xn}中,X1>0,a>0,Xn+1=1/2(Xn+a/Xn).

强烈要求加分.这个就是差分方程,关于他的解都有定论Xn+1-根号a=1/2(根号Xn-根号(a/Xn))^2Xn+1+根号a=1/2(根号Xn+根号(a/Xn))^2(Xn+1-根号a)/(Xn+1+