z=sin(xy)的全微积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:44:39
z=sin(xy)的全微积分
求函数z=e^xy*cos(x+y)的全微分dz

我来试试吧...z=e^xy*cos(x+y)Z'x=ye^xycos(x+y)-e^xysin(x+y)Z'y=xe^xycos(x+y)-e^xysin(x+y)故dZ=[ye^xycos(x+y

计算函数z=x²sin(xy)的偏导数∂z/∂x

=2x*sin(xy)+x^2*y*cosx题中的偏导数就是把y变成常数.详细步骤真没有.再问:是对的吧--我真是一点都不懂--毕业考试不过拿不到毕业证,求负责你说对我就这么背了再答:别背。真的要理解

求函数z=sin(xy)二阶偏导数

一阶dz/dx=ycosxydz/dy=xcosxy二阶d^2z/dx^2=y^2cosxyd^2z/dy^2=x^2cosxy还有混合导数相等就写一个了=cosxy-xcosy

求二元函数Z=e^xy在点(1,2)处的全微分

Z=e^xy在x处的导函数为ye^(xy)在y处的导函数为xe^(xy)dz=ye^(xy)dx+xe^(xy)dy=2e^2dx+e^2dy

微积分二重积分的应用:求立体的体积 求由曲面z=xy,x+y+z=1,z=0所围成立体的体积.

借用下:求两个曲面z=2-4x^2-9y^2与z=√(4x^2+9y^2)所围立体的体积V设x=rcosθ/2,y=rsinθ/3,r>0,则原来的两个曲面方程化为z=2-r²,z=r,它们

设Z=F(X,Y)是由方程E^Z-Z+XY^3=0确定的隐函数,求Z的全微分Dz

对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)

z=xsin(xy).则dz z| x=1 y=1的全微分是

dz=[sin(xy)+xycosxy]dx+(x^2cosxy)dydz|(1,1)=(sin1+cos1)dx+cos1dy再问:先求dx,dy,详细过程谢谢再答:=sin(xy)+xycosxy

全微分精通者帮忙!设z=z(x,y)由方程e的z次方-xy的2次方+sin(y+z)=0确定,求dz

(y^2+2xy-cos(y+z))/(e^z+cos(y+z))再问:没有过程吗?再答:求导:e^z*dz-y^2-2xy+cos(y+z)(1+dz)=0把含有dz的项移到一起:(e^z+cos(

z=sin(xy)+cos^2(xy)一阶偏导数

∂Z/∂x=y*cos(xy)-2cos(xy)*sin(xy)*y=y*cos(xy)-y*sin(2xy)∂Z/∂y=x*cos(xy)-2cos(

求z=In(x²+y²)在点(0,-1)处的全微分 求函数z=sin(xy)+cos²(x

...偏z/偏x=-8切线(x-8)/8=(y+8)/1=(z-8)/8,法平面:x+z-8=1(8):应该是抛物线y^8=8x吧抛物线在(8,8...函数z=In(x+y)沿着这抛物现在该点处偏向x

z=sin(xy)+cos(的平方)(xy) 求函数的偏导数,

Zx=ycos(xy)-2ycos(xy)sin(xy)=ycos(xy)-ysin(2xy)Zy=xcos(xy)-xsin(2xy)

求下列函数的全微分z=(In(x^2+y^2))^xy

两边即对数得:lnz=xy*ln(lnu),不妨记u=x^2+y^2z'x/z=yln(lnu)+2x^2y/lnu,z'x=z[yln(lnu)+2x^2y/lnu]z'y/z=xln(lnu)+2

设z是由方程z=sin(xz)+xy确定的函数,求z对x的二阶导数,x=0,y=1.

这是隐函数.二阶导再导一次就是.方程两边对x求导,得z'=cos(xz)(xz)'+y(y不是关于x的函数吧?)=zcos(xz)+xz'cos(xz)+y所以z'=[zcos(xz)+y]/[1-x

z=sin(xy)\(1-x2-y2)的所有间断点全体构成的集合为

根据函数z的定义域可知z=sin(xy)/(1-x²-y²)的全部间断点为1-x²-y²=0,这些间断点都位于单位圆上,以集合形式表达应为:{(x,y)|x&#

做数学题关于微积分的Z=xy+y/x,则dz=_________

∂z/∂x=y-y/x^2∂z/∂y=x+1/x所以dz=(y-y/x^2)dx+(x+1/x)dy

大一的微积分~求μ=f(x,xy,xyz),z=φ(x,y)的一阶偏导数

f1表示f对第1个变量求导数,其余类推.∂μ/∂x=f1+f2(y)+f3(yz+xy∂φ/∂x)=f1+yf2+y(z+x∂φ/ͦ

求函数Z=XY在点(2,1)处的全微分dz

再问:就是这个吗?再答:是的。如还有不懂请追问,懂了请采纳。再问:还有这三题