z=二重积分(x^2 4y^2 9) 范围x^2 y^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:31:21
可以转换成柱坐标系,则0≤ρ≤2cosθ,0≤θ≤π,ρ²≤z≤8,然后积分∫∫∫ρdρdθdz,我计算的结果是7π,就是这样了,不知道还有什么要问的没有.
用极坐标被积函数(3-r(sint+cost))rt从0到2pi;r从0都1结果3pi
注意一下积分的上下限就ok了,体积直接是三重积分dxdydz过程见图片,结果是1/36,不清楚追问撒~再问:能用二重积分算一下嘛。再答:其实积分一次之后就成二重积分了呃...无非多一句解释
V=∫∫(1-x-2y)/3dxdy表示积分上限为a,下限为b.计算应该没问题吧,V=1/36,其实你画个图很容易算出V=1/6X1X1/2X1/3=1/36
这题是一个第二类曲面积分的题目,把邮箱发给我,我给你发过去,我已经编辑成word格式了.看着比较舒服.
借用下:求两个曲面z=2-4x^2-9y^2与z=√(4x^2+9y^2)所围立体的体积V设x=rcosθ/2,y=rsinθ/3,r>0,则原来的两个曲面方程化为z=2-r²,z=r,它们
转为球坐标计算比较简便,z>=根号下(x^2+y^2)决定了θ的范围为[0,π/4],x^2+y^2+z^2
所求体积=∫dx∫(1-x-y)dy=∫[(1-x)²/2]dx=(1/2)(1/3)=1/6.
补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-
=∫x(yzx^2-1/2(xz)^2)dx+∫y(1/2x^2+xy)dy=[1/3yzx^3-1/6z^2x^3+1/2x^2y+1/2xy^2]|z[0,2]、y[0,1]、x[0,1]=1
楼上错了z=9-x^2-4y^2与xy平面围成的立体即z=9-x^2-4y^2>=0x^2+4y^2
由2x+y-4=0解得x,y的取值范围为0≤x≤2,y=-2x+4∴V=∫[∫zdy]dx=∫[∫y^2dy]dx=∫[y^3/3]dx=∫[(-2x+4)^3/3]dx=-1/2∫[(-2x+4)^
把立体看作是一个曲顶柱体,曲顶是一个曲面z=f(x,y)=12-4x-3y,底面是xy坐标面上的闭区域D则体积V=∫∫(D)f(x,y)dxdy=∫∫(D)(12-4x-3y)dxdy底面是x=0,y
关键是积分区域的处理! 另外膜拜一下一楼,这个题目也能用极坐标?
将此图形投影到z=0平面,即令z=0,则得出x与y围成的图形,化简得4*x*x+y*y=16,为椭圆,则可得出x,y的范围,然后在此范围对z二重积分,即对4-x*x-(1/4)y*y二重积分即可.
∵所围成图形是关于xz平面和yz平面对称的∴所求体积=4×第一卦限体积∵由x²+y²+z²=R²==>z=√(R²-x²-y²)由
16π/3-64/9.对如果把|sinθ|写成了sinθ,结果就是16π/3再问:那么请问到底要不要减去64/9呢?哪里要用到sinx的绝对值呢?谢谢大神^O^
我用{表示积分号了.v={{y^2dxdy用极坐标积分,半径为r,角为a.v={(0,2PI)da{(0,1)(rsina)^2*rdr=1/8{(0,PI)(1-cos2a)da=PI/4