z=f(x^2 y^2),其中f具有二阶导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:29:28
z=f(x^2 y^2),其中f具有二阶导数
求函数z=f(x^2y,xy^2)的二阶偏导数∂^2z/∂x^2 其中f具有二阶连续偏导数

求函数z=f(x²y,xy²)的二阶偏导数∂²z/∂x²其中f具有二阶连续偏导数,还有∂²z/∂y&#

设函数f(x,y,z)=yz^2 e^x,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则函数f(x,y,

df(x,y,z)/dx=[d(z^2)/dx]*y*e^x+y*z^2*(de^x/dx)=2zye^x(dz/dx)+y*z^2*e^x另,由x+y+z+xyz=0求dz/dx两边对x求偏导1+0

设Z=y/f(x^2-y^2),其中f(u)为可导函数,验证1/X乘δz/δx + 1/y乘δz/δy =z/y^2

这是复合函数的导函数的利用δz/δx=2xyf'/f²δz/δy=[f+yf'(-2y)]/f²=(f-2y²f')/f²1/x×δz/δx+1/y×δz/δy

设z=f(x^2+y^2,xy),其中f具有一阶连续偏导数,求z的偏导数

令u=x^2+y^2,v=xy得∂z/∂x=(∂f/∂u)(∂u/∂x)+(∂f/∂v)(∂

设z=f(xy,y/x),其中f具有二阶连续偏导数,求a^2z/ax^2,a^2z/axay.

先求一阶导数,由于f有两个分量,要先对f的两个分量求导,再根据复合函数求导,两个分量对x求导,也就是z对x的一阶导数是:f1*y-f2*y/x^2,接下来再让这个式子对x求导,注意,这里利用乘法的导数

z=f(sinx,xy),其中f具有二阶连续偏导数,求ε^2z/εxεy

求d^2z/dxdy先求dz/dx,或者dz/dydz/dx=f1*cosx+f2*y(注意f1,f2意思是分别对sinx,xy求导,而且也同样都是关于sinx,xy的函数:f1(sinx,xy),f

设函数f可微,z=f(ye^x,x/(y^2)) 求z/x,z/y

两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a

z=f(sinx,e^y)其中f具有连续的二阶偏导数 求δ^2 z / δxδy

δz/δx=f1·cosx+f2δ^2z/δxδy=cosx﹙f11+f12·e^y﹚+f21+f22e^y再问:大哥,能在详细点吗再答:δz/δx=f1·cosx+f2(把x当常数,把y当未知数求导

设z=f(sinx,e^x-y)其中f具有连续的二阶偏导数 求δ^2 z / δxδy

可以拆分成先对x的偏导数.再对y的偏导数,原函数是复合函数,可以令m=sinx,n=e^x-y&Z/&x=&Z/&m*&m/&x+&Z/&n*&n/&x符号太难找我就这么代替了,希望能让你看懂啊...

设函数z(x,y)由方程z-f(2x,x+y,yz)=0确定,其中f具有连续的偏导数,求dz

设fi为f对第i个变量的偏导,i=1,2,3dz-f1(2x,x+y,yz)*2dx-f2(2x,x+y,yz)(dx+dy)-f3(2x,x+y,yz)*(ydz+zdy)=0==>dz=((2f1

若f(x)=lg((1+x)/(1-x)),若f((y+z)/(1+yz))=1,f((y-z)/1-yz))=2,其中

令(y+z)/(1+yz)=X1,(y-z)/(1-yz)=X2,因为f(x)=lg((1+x)/(1-x))所以f(X1)=lg((1+X1)/(1-X1)=1,f(X2)=lg((1+X2)/(1

多元复合函数求导题目z=y/f(x^2-y^2),其中f(u)为可导函数,验证(1/x)*(ðz/ðx)

z=y/f(x^2-y^2)ðz/ðx=y(-2xf'/f^2)ðz/ðy=1/f+y(2yf'/f^2)(1/x)*(ðz/ðx)=-2yf'/f^2

对于函数f(x)=lg1+x/1-x,若f(y+z/1+yz)=1,f(y-z/1-yz)=2,其中-1<y<

注意到:Ka=1+(y+z)/(1+yz)=(1+y+z+yz)/(1+yz)=(1+y)(1+z)/(1+yz)Kb=1-(y+z)/(1+yz)=(1-y-z+yz)/(1+yz)=(1-y)(1

3道高数题,1,函数F(x,y,z)=(e^x) * y * (z^2) ,其中z=z(x,y)是由x+y+z+xyz=

1、隐函数对x求导得1+az/ax+yz+xy*az/ax=0,故az/ax=-(1+yz)/(1+xy);F对x求导得aF/ax=e^x*y*z^2+e^x*y*2z*az/ax;当x=0,y=1时

设函数Z=(y-1)/f(x^2-y^2),其中f可导,试求z在(1,1)的导数dz

你好!“数学之美”团员448755083为你解答!首先dz不叫导数,对于多元函数来讲,应该叫全微分.∂f/∂x=f'·2x∂f/∂y=-f'·2y

设z=y/(f(x^2-y^2)),其中f为可导函数,验证

∂z/∂x=-((∂f/∂x)*y*2x)/f^2∂z/∂y=1/f+2y2*(∂f/∂y)/f^21/

分解因式:f(x,y,z)=x^2(y-z)+y^2(z-x)+z^2(x-y)

=x²(y-z)+y²(z-x)+z²(x-z+z-y)=(y-z)(x²-z²)+(z-x)(y²-z²)=(y-z)(x-z)