z=f(xy²,x²y), 求∂²z ∂x∂y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:23:07
dz/dx=y(yf1'+2f2')dz/dy=f(xy,2x+y)++y(xf1'+f2')da/dxdy=(yf1'+2f2')+y【f1'+y(xf1'+f2')+2(xf1'+f2')】=2y
dz=(∂z/∂x)dx+(∂z/∂y)dyxy+yz+xz-1=0设g(x,y,z)=xy+yz+xz-1 ∂g/∂x=y+
(太麻烦拉,给点分啊!)设v=x*x-y*y,u=exp{xy}那么dv/dx=2x(这里应该用偏导符号,代替一下),dv/dy=2y,du/dx=y*exp{xy},du/dy=x*exp{xy}那
根据一阶全微分形式不变得dz=d(xf(x^y,e^xy)=f(x^y,e^xy)dx+xd(f(x^y,e^xy))=f(x^y,e^xy)dx+x[f1'd(x^y)+f2'(de^xy)]=f(
令u=xy,v=x+yz=f(u,v)az/ax=y(fu)+(fv)a^2z/axay=a(az/ax)/ay=a(y(fu)+(fv))/ay=(fu)+y(a(fu)/ay)+a(fv)/ay=
∂z/∂x=∂z/∂(x^2-y^2)*∂(x^2-y^2)/∂x+∂z/∂(xy)*∂(x
∂z/∂x=f1'∂(x^2-y^2)/∂x+f2'∂xy/∂xf1',f2'表示函数对x^2-y^2,xy的偏导,∂
求二元函数全微分z=f[x²-y²,e^(xy)]设z=f(u,v),u=x²-y²,v=e^(xy)则dz=(∂f/∂u)du+(
设u=xy,v=y/x,则z=f(u,v),所以ðz/ðx=f'1*ðu/ðx+f'2*ðv/ðx=yf'1-yf'2/x^2,注意到f'1
你只要X看成是是常数求导就行了,答案就不给你了,自己动手丰衣足食
δz/δx=y^2*f1+(2y-1)*f2δz/δy=2xy*f1+x^2y*2*f2再问:f1和f2是什么?再答:f1表示z对x求导,也可写成fx,(x为下标,在右下角,我不好打,不好意思!)这只
再问:可以再帮我答题吗,我这边有很多财富值可以给你再问:
设u=xy,v=y/x,则z=x³f(u,v),au/ax=y,av/ax=-y/x²故az/ax=3x²f(u,v)+x³f'u(u,v)(au/ax)+x&
令u=xy,v=e^(x+y)Z'x=Z'u*U'x+Z'v*V'x=f'u*y+f'v*e^(x+y)Z'y=Z'u*U'y+Z'v*V'y=f'u*x+f'v*e^(x+y)
对于任意的整数x和y,都符合F(xy)除以1997的余数与f(x)f(y)的乘积除以1997的余数相等
求二元函数全微分z=f[x²-y²,e^(xy)]设z=f(u,v),u=x²-y²,v=e^(xy)则dz=(∂f/∂u)du+(
x^2+y^2+z^2+2(xy+yz+zx)=(x+y+z)^2=1由柯西不等式有x^2+y^2+z^2>=(x+y+z)^2/3=1/3所以xy+yz+zx=(1-x^2-y^2-z^2)/2
u=x^2+y∂u/∂x=2x∂u/∂y=1du=(∂u/∂x)dx+(∂u/∂y)dy=2xdx+dy