z=e^u lnv
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:03:12
(太麻烦拉,给点分啊!)设v=x*x-y*y,u=exp{xy}那么dv/dx=2x(这里应该用偏导符号,代替一下),dv/dy=2y,du/dx=y*exp{xy},du/dy=x*exp{xy}那
1,等式两边对x进行求导,然后分离出dz,结果为:(1+x/z^2)dz=(1/z)dx-e^ydy,然后再把dz前面的那块除到等式的右边就可以了.2,用极坐标求积分,就是画出积分区域,应该是位于第一
e^(-xy)-2z+e^z=0-ye^(-xy)-2z'(x)+e^zz'(x)=0z'(x)=ye^(-xy)/(e^z-2)-xe^(-xy)-2z'(y)+e^zz'(y)=0z'(y)=xe
e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(
e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/
对方程e^(-xy)+2z-e^z=2两边微分,有:e^(-xy)*d(-xy)+2*dz-e^z*dz=0-e^(-xy)*(x*dy+y*dx)+2*dz-e^z*dz=0移项,得:(e^z-2)
第2问算错2处:E[X|Y=2]=9/5,不是5/16E[X|Y=1,Z=2]=8/5,不是7/5
答案见附图 说明:这是复变函数的环路积分,第一式子的积分是科希定理,可以查阅数学物理方法或复变函数的书籍.
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
此题两种方法求出的偏导数是相等的,估计题主算错了.方法如下:1:用算出的一阶偏导数求二阶混合偏导数如下:(计算中注意e^z=xyz)2:用题中的方法二计算: 所以两种方法计算结果相同
对x求导,e^z*z'(x)=yz+xyz'(x),z'(x)=yz/(e^z-xy)对y求导,e^z*z'(y)=xz+xyz'(y),z'(y)=xz/(e^z-xy)
柯西积分公式原式=2πie^z|z=0=2πi希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|
1、隐函数对x求导得1+az/ax+yz+xy*az/ax=0,故az/ax=-(1+yz)/(1+xy);F对x求导得aF/ax=e^x*y*z^2+e^x*y*2z*az/ax;当x=0,y=1时
由已知得dy/dx=(e^y+z)/(e^x+z),dz/dx=(z^2-e^(x+y))/(e^x+z),dz/dy=(z^2-e^(x+y))/(e^y+z),所以可以得到三式,e^ydx+zdx
首先找出f(z)的奇点,为z=±1且都是一介极点那么无穷远点的留数就等于这两点的留数和的相反数,z=-1点的留数,根据定理得到{(e^z)/(z-1)|[z=-1]}=(-1/2)e^(-1)z=1点
设z=x+iyf(z)=e^z=e^(x+iy)=e^x·e^(iy)=e^xcosy+ie^xsinyRe[f(z)]=e^xcosy,Im[f(z)]=e^xsiny令u(x,y)=e^xcosy
x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).
e^z=-1-i=√2*e^(5πi/4),∴z=ln(√2)+i(2k+5/4)π,k∈Z.