Z2=3 4i,|Z|=51且Z1.Z2是纯虚数,求Z

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:34:49
Z2=3 4i,|Z|=51且Z1.Z2是纯虚数,求Z
已知复数z满足z*z拔=4,且|z+1+√3i|=4,求复数z

z=1+√3i 代数法如下图: 几何法:由复数的几何意义可知,z表示的点与点(-1,-√3)关于原点对称则,z表示的点为(1,√3)所以,z=1+√3i

已知复数Z满足|Z|=1,且Z≠±i,求证:(z+i)/(z-i)是纯虚数

(z+i)/(z-i)取barbar(z+i)/(z-i)=(barz-i)/(barz+i)(因为|Z|=1,所以z*barz=1)=(1/z-i)/(1/z+i)=(1-iz)/(1+iz)=(i

已知z、ω为复数,(1+3i)z为实数,ω=z2+i

设z=x+yi(x,y∈R),∵(1+3i)z=(1+3i)(x+yi)=(x-3y)+(3x+y)i∈R∴虚部3x+y=0,即y=-3x     &

已知z,ω为复数,(1+3i)•z为纯虚数,ω=z2+i

设z=x+yi,(x、y∈R),则(1+3i)•z=(x-3y)+(3x+y)i为纯虚数,∴x-3y=0,3x+y≠0,∵|ω|=|z2+i|=52,∴|z|=x2+y2=510;又x=3y.解得x=

已知复数z满足:z2=i,(i是虚数单位),则z=______.

设z=a+bi∵z2=i,∴(a+bi)2=i,∴a2-b2+2abi=i,∴a2=b2,2ab=1,∴a=22,b=22或a=-22,b=-22∴z=±22(1+i)故答案为:±22(1+i)

关于复数z的方程z2-(a+i)z-(i+2)=0(a∈R),

(1)若此方程有实数解,设z=m∈R,代入方程可得m2-(a+i)m-(i+2)=0,即m2-am-2+(-m-1)i=0,∴m2-am-2=0,且-m-1=0,∴m=-1,a=1.(2)假设原方程有

已知z1=5+10i,z2=3-4i,1/z=1/z1+1/z2,求z.

1/z=(z1+z2)/(z1z2)z=(5+10i)(3-4i)/(5+10i+3-4i)=(15+40-20i+30i)/(8+6i)=(55-10i)(8-6i)/(8+6i)(8-6i)=5(

已知Z1=2,Z2=2i,Z是一个模为2根号2的复数,|z-z1|=|z-z2|,求z

利用图像法.点z1在x轴上,点z2在y轴上,因为|z-z1|=|z-z2|,即z到z1的距离等于z到z2的距离,即z必在∠z1Oz2的角平分线上,所以z在一,三象限的角平分线上,即辐角主值为π/4或5

F(z)=|1+z|-z的共扼复数,且F(-z)=10-3i,求复数z

设z=a+bi.F(-z)=|1-z|+z=√[(1-a)²+(-b)²]+a+bi=10-3ib=-3.√[(1-a)²+3²]+a=10.解得:a=5.z=

已知z1=1+2i,z2=2-i,1/z=z1+z2,

z1=1+2i,z2=2-i,z1+z2=1+2i+2-i=3+i1/z=3+iz=1/(3+i)=(3-i)/(3+i)(3-i)=1/10(3-i)=3/10-1/10i

已知复数Z1=5+10i,Z2=3-4i,1/Z=1/Z1+1/Z2,求Z 答案是12(10-5i),要

1/z=1/(5+10i)+1/(3-4i)=(3-4i+5+10i)/(5+10i)(3-4i)=(8+6i)/(15-20i+30i+40)=(8+6i)/(55+10i)z=(55+10i)/(

已知复数z=b-2i(b为实数),且z2−i是实数.

(1)∵z=b-2i,由z2−i=b−2i2−i=(b−2i)(2+i)(2−i)(2+i)=(2b+2)+(b−4)i5为实数,则b=4.∴z=4-2i;(2)∵(z+ai)2=(4-2i+ai)2

已知复数z1=a+2i,z2=3-4i,且z

z1z2=a+2i3−4i=(a+2i)(3+4i)25=(3a−8)+(6+4a)i25,因为z1z2为纯虚数,所以3a-8=0,得a=83,且6+4×83≠0,所以a=83满足题意,故z1=83+

已知复数z1=(2x+1)+i,z2=y+(2-y)i 若z1=z2,且x属于R,y为纯虚数,求z

设y=biz2=bi+(2-bi)i=b+(2+b)iz1=z2(2x+1)+i=b+(2+b)i所以2x+1=b1=2+bb=-1x=-1z1=-1+iz2=z1=-1+i-------------

已知z1=a+3i(a大于零)且z的模=5,求z2

这个z2是不是z1的共轭复数?解因为z1的膜为5所以a^2+3^2=5^2a^2=16a=4或a=-4z2=4-3i或z2=-4-3i.

设f(z)=z(z属于C),z1=3+4i,z2=-2-i,则f(z1-z2)等于?

f(z1-z2)=z1-z2=(3+4i)-(-2-i)=3+4i+2+i=5+5i

已知z1=5+10i,z2=3-4i,1z=1z

1z=1z1+1z2=z1+z2z1z2∴z=z1z2z1+z1又∵z1=5+10i,z2=3-4i∴z=(5+10i)(3−4i)5+10i+3−4i=55+10i8+6i=(55+10i)(8−6

若虚数z满足z1z2+2i(z1-z2)+4=0,且z1的模不等于2,则(z2-4i)的模是多少?

z1z2+2i(z1-z2)+4=0即(z1-2i)(z2+2i)=0,因为z1的模不等于2,所以z1-2i不等于0,所以z2+2i=0,z2-4i=-6i,所以(z2-4i)的模是6.