y^2的曲线积分,其中区域为摆线的一拱
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:03:40
用留数定理.考虑复变函数f(z)=z*/|z|^2,其中z*是z的共轭,||是模.这个函数在整个复平面上的奇点只有z=0,而z=0在L所围的三角形之外,所以,曲线积分∫Lf(z)dz=0.化为x,y的
积分曲线就是一个大圆的圆周为了清楚我用图片写给你了,要被审核一会(请稍等几分钟,或者直接hi我)再问:麻烦你在看看这道题好么求∫x²ds,其中c为x²+y²+z²
因为用完高斯公式后是三重积分,三重积分的积分区域中x²+y²+z²≤1,并不等于1.因此不能用1来代替x²+y²+z².有个很简单的方法记住
根据格林公式⑴∮P(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy有∫L(2x-y+4x)dx+(5y+3x-6)dy=∫∫D(3-1)dxdy=2∫∫Ddxdy=2*S△=
∫(y^2+sinx)dx+(cos^2y-2x)dy=∫(-2y+sinx)dx+(cos^2y-2x)dy+∫(y^2+2y)dx前一个格林公式等于零∫(y^2+2y)dx将星形线参数方程带入∫[
应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程
因为所给曲线为关于x轴对称的半圆吧?我们可以用对称性,直接研究第一象限中的曲线部分吧?再乘以2不完了吗?因此绝对值可以去掉了吧?用极坐标代换简单的……分别计算简单,没有什么捷径可走的,分成两个曲线计算
Ω为三个坐标面及平面x/2+y+Z=1所围成的区域,原式=∫zdz∫dy∫dx=∫zdz∫2(1-y-z)dy=∫z[2(1-z)^-(1-z)^]dz=∫(z-2z^+z^3)dz=[(1/2)z^
先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:
原式=∫xdx∫dy∫dz=∫xdx∫(1-x-2y)dy=∫x[(1-x)²/4]dx=1/4∫(x-2x²+x³)dx=(1/2-2/3+1/4)/4=1/48.
P=sin²x+y、Q=0P'y=1,Q'x=0∫(L)(sin²x+y)dx=∫∫(D)(0-1)dxdy=-∫(-1→1)dy∫(y²→1)dx=-2∫(0→1)(1
可能是哪里想不通吧~以✔10为上限的是投影法,以✔(2x)为上限的是切片法再问:懂了懂了,一时糊涂了,谢谢你!
被积分函数的不用管了吧都是∫∫f(rcosθ,rsinθ)rdrdθ1.代入x=rcosθ,y=rsinθ则,
原积分=∫(0到1)(1+y^2)dy+∫(1到0)(x^3+x)dx+∫(1到0)y^2dy+∫(0到1)x^3dx=4/3-3/4-1/3+1/4=1/2.
Y=-X+根号2-根号2
首先第二型曲线积分中的积分曲线是有方向的,而你的题目里没有,我就默认是逆时针方向了.用格林公式计算,为此补充曲线C':x轴上0到2一段,则C和C'构成闭曲线,其所围区域为以(0,0),(2,0),(1
因为P=-x^2y,Q=xy^2.所以Py=-x^2,Qx=y^2.利用格林公式:∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy,其中c是的取正向的边界曲线.故原式=