y=ln(x∧2+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:15:38
y=ln(x∧2+1)
y=ln(x+√x^2+1)是奇函数

分子分母同乘以√x^2+1-x再问:哪里来的分子分母?我问的是第一步是怎么来的?再答:把x+√x^2+1看成(x+√x^2+1)/1,分母看成1

证明y=x-ln(1+x^2)单调增加

y'=1-2x/(1+x²)=(1+x²-2x)/(1+x²)=(x-1)²/(1+x²)显然y'>0所以y单调增加

y=-ln(-x+(x^2-a^2)^(1/2))

分子有理化,分子分母同乘以-x-√(x²-a²)结果是2lna-ln(-x-√(x²-a²))

y=ln(x+√1+X^2)的导数

y'=[ln(x+√(1+x²))]'=1/(x+√(1+x²))*[x+√(1+x²)]'=1/(x+√(1+x²))*[1+2x/2√(1+x²)

y=ln(根号(x^2+1)-x)的反函数

两边相加都是0,没啥意义啊,我有一种方法

y=ln(1+x^2),求y

y'=[1/(1+x^2)]*(1+x^2)'=[1/(1+x^2)]*2x=2x/(1+x^2)

y=ln(1-x^2)

chainruley=f(g(x))y'=g'(x)f'(g(x))

y=ln[ln(ln x)] 求导

复合函数f(x)=lnxg(x)=ln[ln(x)]r(x)=ln{lnln(x)]}r'(x)=[1/lnln(x)]g'(x)=[1/lnln(x)][1/ln(x)]f'(x)=[1/lnln(

求y=ln^x(2x+1)的导数

y=ln[x(2x+1)]=ln(2x^2+x)所以:y'=[1/(2x^2+x)]*(2x^2+x)'=[1/(2x^2+x)]*(4x+1)=(4x+1)/(2x^2+x).如果是:y=lnx*(

求导:y=ln(x+根号下(1+x^2))

y'=1/(x+√(1+x²))*(x+√(1+x²)'(x+√(1+x²)'=1+1/[2√(1+x²)]*(1+x²)'=1+2x/[2√(1+x

y=ln^2(1-x)求导

Y=[LN(1-X)]^2?Y'=2LN|1-X|/(1-X)(-1)=-2LN|1-X|/(1-X)

函数y=x-1+ln(2-x)

要使函数有意义,须满足x-1≥02-x>0,解得1≤x<2,∴函数y=x-1+ln(2-x)的定义域是[1,2),故答案为:[1,2).

y=ln(1-x^2) 求y''

y=ln(1-x^2)y'=(1-x^2)'/(1-x^2)=-2x/(1-x^2)

y=ln(1+x^2)求导

2x/(1+x^2)

y=ln(2x^-1)求导

y'=ln(2x^-1)'=(x/2)*2*(-1)/x^2=-1/x

y=ln(x+√x^2+1),求y

x≤0时√x^2=-x所以y=0x>0时√x^2=x所以y=ln(2x+1)