y=ln(1 sin²x)的微分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:58:16
Z=(1/2)ln(1+x²+y²)dz=(1/2)2x/(1+x²+y²)dx+(1/2)2y/(1+x²+y²)dy=x/(1+x&su
第一题,这是个隐函数,两边对x求导得:2y'-1=(1-y')*ln(x-y)+(x-y)*(1-y')/(x-y)=(1-y')*ln(x-y)+(1-y')所以[3+ln(x-y)]y'=ln(x
等式两边同时求导得:2y*y'+y'/y=4*x^3-->y'=4y*x^3/(2y^2+1)y'=dy/dx-->dy=y'*dx=dx*4y*x^3/(2y^2+1)
F(x,y)=x+lny-y=0dF(x,y)=0=(∂F(x,y)dx/∂x)+(∂F(x,y)dy/∂y)dy/dx=-(∂F(x,y)
dz=[-3ysin3xy+1/(1+x+y)]dx+[-3xsin3xy+1/(1+x+y)]dy
z偏x=-sin3xy*3y+1/(x+y+1)z偏y=-sin3xy*3x+1/(x+y+1)dz=[-sin3xy*3y+1/(x+y+1)]dx+[sin3xy*3x+1/(x+y+1)]dy
symsx>>y=log(x+sqrt(1+x^2));>>simple(diff(y)ans=1/(1+x^2)^(1/2)>>y=log(2*x+sqrt(1+x^2));>>simple(dif
y=ln[x+√(1+x²)]∴y'=[x+√(1+x²)]'/[x+√(1+x²)]=[1+x/√(1+x²)]/[x+√(1+x²)]=[x+√(
再答:我的回答你还满意吗?如有疑问请继续追问我
x+3>0,且ln(x+3)≠0得:x>-3且x≠-2所以,定义域为(-3,-2)U(-2,+∞)
1.d(cosx)^2=2cosx(-sinx)dx=-sin2xdx2.dsin(x²-1)=cos(x²-1)d(x²-1)=cos(x²-1)×2xdx=
解y=ln²(1-2x)y'=dy/dx=[ln²(1-2x)]'=2ln(1-2x)[ln(1-2x)]'(1-2x)'=2ln(1-2x)[1/(1-2x)(-2)=[-4ln
y=[ln(1-x)^2]^2y'=2[ln(1-x)^2]*[ln(1-x)^2]'=2[ln(1-x)^2]*[2ln(1-x)]'=2[ln(1-x)^2]*2*1/(1-x)=4*[ln(1-
答:y=sin²x求导:y'=dy/dx=2sinxcosx=sin2x所以:微分dy=(sin2x)dx
dy=dx/(√(1+x^2))不好意思,我没办法将过程打出来
y'=2e^2xcos(e^2x)把y看成复合函数sint,t=e^m,m=2x.复合函数求导,等于三个分别求导的积
点击放大,荧屏放大再放大: