y=e^x与直线y=e及y轴绕y轴旋转体

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:53:04
y=e^x与直线y=e及y轴绕y轴旋转体
y=e^(-x)求导

y导数=-e^(-x)

y"-y=e^x的通解

∵y"-y=0的特征方程是r²-1=0,则r=±1∴y"-y=0的通解是y=C1e^x+C2e^(-x)(C1,C2是积分常数)∵设原方程的一个解为y=Axe^x代入原方程得2Ae^x=e^

[e^(x+y)-e^x]dx+[e^(x+y)-e^y]dy=0求通解

全微分方程通解为(e^x-1)(e^y-1)+c

y=(e^x-e^-x)/2

令t=e^x>0则y=(t-1/t)/2t²-2yt-1=0解之取正值得t=y+√(y²+1)所以x=ln[y+√(y²+1)]反函数即为y=ln[x+√(x²

y''-y=e^|x|的通解

解微分方程的时候不要在意这种在常数上的一点点区别,这样来想,你是解得y=c1*e^x+c2*e^(-x)+1/2*x*e^x那么如果令c1=d1-1/2,c2=d2+1/2,就得到y=(d1-1/2)

y'-2y=(e^x)-x

首先求齐次方程通y'-2y=0特征方程:x-2=0x=2为特征根∴y=Ce^(2x)设方程的一个特解为y=Ae^x+ax+b代入方程:Ae^x+a-2Ae^x-2ax-2b=-Ae^x-2ax+a-2

y’+y=e^-x的通解

对应齐次方程是y'+y=0其通解是y=Ce^(-x),C是任意常数设方程的一个特解是y*=axe^(-x),代入方程得ae^(-x)-axe^(-x)+axe^(-x)=e^(-x)ae^(-x)=e

由曲线y=lnx与两直线y=e+1-x及y=0所围成的平面图形的面积是 ___ .

设所围图形的面积为A,∵曲线y=lnx和直线y=e+1-x的交点为:(e,1)又曲线y=lnx,解得:x=ey直线y=e+1-x,解得:x=e+1-y以y为积分变量∴A=∫10[(e+1-y)-ey]

曲线y=ln绝对值x 与直线x=1/e,x=e及y=0所围成平面图形的面积A=

因为围成的区域内,x>0,所以y=lnx.面积在x=1处分成两段,则有:A=∫(1/e,1)(0-lnx)dx+∫(1,e)(lnx-0)dx=-∫(1/e,1)lnxdx+∫(1,e)lnxdx=(

统计学证明E(X-Y)=E(X)-E(Y)

这是一个二维的随机变量,不知道是连续或是离散的不妨设为离散的,(对于连续的只要把求和符号换成积分符号就行啦!)设(X,Y)的联合分布列和边际分布列为:P(X=ai,Y=bj)=pij,i,j=1,2,

求曲线y=lnx与直线y=0,及x=e所围成图形的面积

S=∫[1,e]㏑xdx=x㏑x|[1,e]值差-∫[1,e]1dx=1

y'e^(x-y)=1通解?

y'e^(x-y)=1即dy/e^y=dx/e^x等式两边积分得到e^(-y)=e^(-x)+C,C为常数所以方程的通解为:y=-ln|e^(-x)+C|,C为常数

计算二重积分I=∫∫(D)x^2*e^(-y^2)dxdy,其中D由直线y=x,y=x与y轴围成

“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²

计算曲线y=∣lnx∣与直线x=1/e,x=e及y=0所围成图形的面积?

分两段(1/e,1)(1,e)积分前一段是-lnx,后一段lnx5明白?

E[(X-E(X))*(Y-E(Y))]=E(XY)-E(X)*E(Y)这个公式怎么证明?

要注意E(kX)=kE(X),k是常数E[(X-E(X))*(Y-E(Y))]=E[XY-XE(Y)-YE(X)+E(X)E(Y)]=E(XY)-E(X)E(Y)-E(Y)E(X)+E(X)E(Y)=

曲线 y=e(x次方),y=e(-x次方) 及直线 x=1 所围成的图形的面积.

面积=e^x在0~1之间的积分-e^(-x)在0~1之间的积分=∫e^xdx-∫e^(-x)dx=e^x+e^(-x)=e^1-e^(0)+[e^(-1)-e^(0)]=e+1/e-2=1.086

求y'-y=e^x通解,

y'-y=0-->y=e^xy'-y=e^x-->y=(1+x)e^x通解

设二元随机变量(X,Y)在由x,y轴及直线x+y+1=0所围成的区域上服从均匀分布,求E(X),E(2X-3Y),E(X

y=-(x+1),所围区域x(-(-1,0)E(x)=(a+b)/2=(-1+0)/2=-0.5E(2x-3y)=E(2x-3*(-x-1))=E(5x+3)=5E(x)+3=0.5E(xy)=-E(