多元线性回归方程是用标准化系数标示还是非标准化
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:28:57
这下通了,都是小问题:x1=[100101.9108.2104.01102.6103.6];x2=[174162.6233.8257322.4373.1];y=[88.9283.791.13127.2
不可能有图的两个变量可以在二维空间即平面上作出图形三个变量可以在三维空间作出图形(空间解析几何)四维及以上的就根本不可能做出来了!三维的可用MATLAB再问:比如用spss软件已经做出二元线性回归方程
哥们自己看吧,我没耐心,你有时间就琢磨一下吧!
回归系数越大表示x对y影响越大,正回归系数表示y随x增大而增大,负回归系数表示y随x增大而减小.回归方程式^Y=bX+a中之斜率b,称为回归系数,表X每变动1单位,平均而言,Y将变动b单位.
多元线性回归之前不能做数据标准化处理,否则会出现错误的结果.标准化之后自变量和因变量数列几乎相同或者是相差无几了,所以常数项肯定几乎是0
因为在多元回归分析的过程中,会自动剔除一些对于因变量无显著影响的变量你只是用简单相关分析的不准确,有可能是变量之间存在一些共线性所以导致单个都相关,而在多元回归分析时会有些变量被剔除了,回归方程可以用
标准系数是指数据标准化以后算出来的系数,非标准化系数就是用你原来的数据算出来的系数,如果你想写出你的回归方程的话,就要看非标准那一栏的B下边的系数哈.ppv课,专业的视频网站,想学spss吗?就来pp
简单线性:等式两边都不取对数对数:等式两边都取对数半对数:等式一边取对数显著性检验:单个系数t检验,联合显著性F检验
我觉着你分析的时候要么都标准化,要么就都采用为标准化之前的数据进行分析
你的自变量都是因子分析(FactorAnalysis)出来的因子分数吧,变量单位在之前都统一标准化了,所以非标准系数和标准系数就都一样
可以不用拟合工具箱,直接用矩阵除法即可!因为为线性求a1,a2即把a1,a2当成未知数,x1,x2,Y-a0当成已知量则x1*a1+x2*a2=Y-a0,即[x1,x2]*[a1;a2]=Y-a0令矩
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
用MINITAB来分析如果是用EXCEL的话,用"工具栏"里的"数据分析"中,选定"回归",再选定数据做分析就可以了.
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
回归系数越大表示x对y影响越大,正回归系数表示y随x增大而增大,负回归系数表示y随x增大而减小.回归方程式^Y=bX+a中之斜率b,称为回归系数,表X每变动1单位,平均而言,Y将变动b单位.
既然你是问的消除,意思就是说你已经发现以方差的问题了,下面谈怎么处理这个问题:先按照原始的回归方法去做,然后得到残差向量(ei),其中ei=Yi-(Yi的估计值),然后将回归得到权重矩阵D=diag(
a=[320320160710320320320];f=[0.180.180.180.180.090.360.18];v=[2.31.71.71.71.71.71];F=[38.829.2326.53
http://hi.baidu.com/zhangkai1201/blog/item/c2bf22039bf73983d53f7c64.html
是依据误差的平方和最小这个条件来求回归系数的.比如一元的,y=ax+bE=∑(y-yi)^2=∑(axi+b-yi)^2将a,b看成变量,则E的最小值需有其偏导数为0,即E'a=2∑(axi+b-yi