y=arctan(x 根号下x平方-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 22:24:27
y=arctan(x 根号下x平方-1)
arctan根号下(y/x)=x/y,计算微分

设u=√(y/x)u'x=(-1/2)x^(-3/2)y^(1/2)u'y=(1/2)(xy)^(-1/2)那么原式变成了arctanu=(1/u^2)所以(u^2)arctanu=1两边取全微分得到

求arctan根号下x的不定积分,

∫arctan√xdx=xarctan√x-∫x*1/[1+(√x)^2]*1/2*1/√xdx=xarctan√x-1/2*∫√x/(1+x)*dx(令√x=t,则x=t^2,dx=2tdt)=xa

arctan(y)=x+1, y=?

两边取正切y=tan(x+1)

计算不定积分 积分号arctan (根号下x) dx

∫arctan(√x)dx分部积分=xarctan(√x)-∫x/(1+x)d(√x)=xarctan(√x)-∫(x+1-1)/(1+x)d(√x)=xarctan(√x)-∫1d(√x)+∫1/(

设y=arctan根号(x^2-1)-lnx/根号(x^2-1)求dy

symsx;y=atan((x^2-1)^(1/2))-log(x)/((x^2-1)^(1/2))y=atan((x^2-1)^(1/2))-log(x)/(x^2-1)^(1/2)>>diff(y

y=xarcsin根号下x/(1+x)+arctan根号下x-根号2-根号x求导

y=xarcsin√[x/(1+x)]+arctan√(x-√2)-√x,求导dy/dx=arcsin√[x/(1+x)]+x{√[x/(1+x)]}′/√[1-x/(1+x)]+[√(x-√2)]′

y=arctan 1/x+根号下3-x的定义域是

(1)3-x≥0且x≠0x≤3且x≠0定义域{x|x≤3且x≠0}

Y=e的(arctan根号下x)次方的导数

这还是一个复合函数求导,是三层复合函数分别是y=e的x次方,y'=e的x次方,y=arctanxy'=1/(1+x^2)y=根号xy'=1/(2根号x)根据复合函数求导的方法,详见我答的上一个题.y'

y=arctan根号下(x^2+1) 求函数导数,

y'=1/(1+x^2+1)*[√(x^2+1)]'=1/(x^2+2)*2x/2√(x^2+1)=x/[(x^2+2)√(x^2+1)]

z=arctan根号下x^y对x和y各求一阶偏导

dz/dx=y*x^(y/2-1)/2(1+x^y)dz/dy=lnx*x^(y/2)/2(1+x^y)

y=arctan根号x定义域和值域

定义域x>0值域0<y<π/2,

求二阶导数arctan x/y = ln根号x^2+y^2

直接写重要步骤:两端对x求导,化简,得y-y'x=2x+2y-y'y'=(y-2x)/(x+2y)两端再对x求导,化简,并将上一步结果代入,得y''=-10(x^2+y^2)/(x+2y)^3

y=arctan(1/x)求导

y'=1/[1+(1/x)^2]*(1/x)'=x^2/(1+x^2)*(-1/x^2)=-1/(1+x^2)

arctan(x,arctan(x,y)是不是等于arctan(x/y)?

差不多,但是有小区别.arctan(x/y)的范围是(-π/2,π/2)而arctan(x,y)的范围是(-π,π]http://www.cplusplus.com/reference/clibrar

y=arctan(x^2+1)

y'=1/[1+(x^2+1)^2]×(x^2+1)'=2x/(x^4+2x^2+2)再问:

求导y=arctan(根号(1-3x))

因为,(tanx)’=1/cos²x,Y^(-1){Y的反函数}=tanx所以y^(-1)=(-2)·√(1-3x)/3·coos²√(1-3x)因为y’=1/[y^(-1)]ˊ所

不定积分arctan根号x dx

分步积分法原式=xarctan√x-∫xdarctan√x=xarctan√x-∫x/(1+x)dx=xarctan√x-∫(x+1-1)/(1+x)dx=xarctan√x-∫[1-1/(1+x)]