y=arcsin根号1-x 1 x , y=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:04:37
y'=1/√(1-2x-1)*[√(2x+1)]'=1/√(-2x)*1/[2√(2x+1)]*2=1/√(-4x²-2x)
y=arcsin根号sinx的导数={1/√[1-(√sinx)^2]}*根号sinx的导数={1/√[1-(√sinx)^2]}*(1/2√sinx)*sinx的导数={1/√[1-(√sinx)^
y=arcsin((1-x^2)^0.5)y'=(1-(1-x^2))^-(1/2)*(-2x)=(-2x)/((1-(1-x^2))^0.5)=(-2x)/((1-1+x^2)^0.5)=(-2x)
答:楼上的回答有问题.原式可变换为1/X=siny,由-1≤siny≤1,所以-1≤1/X≤1,画出y=1/x的图像分析可得定义域为-1≤x或者x≥1;-1≤1/X≤1,结合arcsin函数的定义,得
这是一个复合函数求导的题,复合函数的求法是f(g(x))导数=f'(g(x))*g'(x).y=arcsinx的导数=1/根号(1-x^2)这是公式.y=根号x的导数=1/(2*根号x)也是公式推导的
y'=e^(arcsin√x)*(arcsin√x)'=e^(arcsin√x)*(√x)'/√(1-x)=1/2*e^(arcsin√x)*/√[x(1-x)]
x-4>=0,x>=46-x>=0,x0则4
y=[√(1+x)-(1-x)]/[√(1+x)+√(1-x)]=1-2√(1-x)/[√(1+x)+√(1-x)]=1-2u/vu'=-1/[2√(1-x)],v'=1/[2√(1+x)]-1/[2
地上捡了了一张破纸,竟然有你要的答案,请看!
(sinx)'=cosx[(sinx)^(1/2)]'=(1/2)(sinx)^(-1/2)[arcsin(sinx)^(1/2)]'=1/(1-sinx)^(1/2)y'=(1/2)cosx*(si
令u=(1-x^2)/(1+x^2)然后用复合函数求导公式.最后结果倒是出人意料地简单:-2/(1+x^2)再问:该是-2x/(|x|(x^2+1))吧。。。昨天算起来很复杂就懒得化了。。。再答:你的
你的问题(根号下面到底是什么)没说清楚,我就看着答了.
y=arcsin√(1-x^2)y'=-x/(|x|√(1-x^2))∴dy=-xdx/(|x|√(1-x^2))当x>0dy=-dx/√(1-x^2)当x
再答:可追问!再问:怎么推出第二步的?再答:再答:再问:根号1-x分之1呢?再答:再答:再答:懂了吗?再问:懂了再答:嗯再答:一步一步求就行了,复合函数求导都一样。
y'=√x/(2√(1-x))+e^(cos(1/x))*sin(1/x)/x²再问:是直接用U替换cos(1/x)么?然后进行求导。还是。。谢谢啦。再答:分步算就行了啊,如下:1.(e^c
1.y=90+arctanx/(x-2)a)因为arctanx的定义域是R,所以要使函数有意义,只需x/(x-2)有意义,即定义域为x≠2b)令t=x/(x-2),反解得x=(2t)/(t-1)所以t
一[2,inf]与[-inf,2]二x/(3*x-2)三(x+1)/(x+2)四(1,inf)
y'=f'(arcsin1/x)*(arcsin1/x)'=f'(arcsin1/x)*1/√(1-1/x^2)*(1/x)'=-f'(arcsin1/x)*1/√(1-1/x^2)*1/x^2
1,x>01-x^2≥0解出来求交集0<x≤12.arcsin是正弦函数反函数-1≤x-1/2≤1-1//≤x≤3/23.3-x≥0x≠0求交集x≤3且x≠0arctan是正切函数反函数