y=3x^2-8x 4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:12:03
y=3x^2-8x 4
matlab习题,解下列方程组x1+x2+x3+x4=02x1+3x2-x3-x4=23x1+2x2+x3+x4=53x

a=[1,1,1,1;2,3,-1,-1;3,2,1,1;3,6,-1,-1];>>b=[0;2;5;4];>>x=inv(a)*bx=0.61.3-2.2518e+162.2518e+16再问:我怎

函数y=x4-4x+3在区间[-2,3]上的最大值为______.

∵y=x4-4x+3,∴y'=4x3-4当y'=4x3-4≥0时,x≥1,函数y=x4-4x+3单调递增∴在[1,3]上,当x=3时函数取到最大值72,当y'=4x3-4<0时,x<1,函数y=x4-

求函数y=x4次方+2x平方减1 的值域

换元法,用t=x方换掉,然后配方.t的范围是大于零.y的值域就出来了

判断下列函数的奇偶性:1.y=x3+1/x;2.y=根号2x-1+根号1-2x;3.y=x4+x

1、奇2非奇非偶3非奇非偶再问:解题过程再答:1、f(-x)=-x3-1/x=-f(x),所以是奇函数2、定义域只有x=0.5一点,关于原点不对称,所以非奇非偶3、x=1,y=2,x=-1,y=0,显

已知y5与3x4成正比例,当x=1时,y=2(1)求y与x的函数表达式

第一问设yˆ5=k3xˆ4因为x=1时,y=2所以2ˆ5=k3*1ˆ464=12kk=16/3所以函数的表达式为yˆ5=(16/3)3xˆ4

已知x-y=1,求代数式x4-xy3-x3y-3x2y+3xy2+y4.

原式=(x4-xy3)+(y4-x3y)+(3xy2-3x2y)=x(x3-y3)+y(y3-x3)+3xy(y-x)=(x3-y3)(x-y)-3xy(x-y)=(x-y)(x3-y3-3xy)=(

设函数f(x)=x4-2x2+3,求曲线y=x4-2x2+3在点(2,11)处的切线方程

用点斜式,首先求斜率K,在任意一点斜率K(x)=y‘=4x3-4x当x=2,k=24,所以直线方程就是y-11=24(x-2).

设函数f(x)=X4-2X2+3 1.求曲线y=x4-2x2+3在点(2,11)处的切线方程 2.求函数f(x)的单调区

→f`(x)=3x³-4x→f`(2)=3*8-4*2=16=k→切线方程:y-11=16(x-2)(2):令f`(x)=0,→x=0,x=±2√3/3→xε(-∞,-2√3/3),f`(x

求:数函f(x)=x4-2x2+3(1)求曲线y=x4-2x2+3在点(2,11)处的切线方程我在线帮帮忙急需等着你的解

若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f(x)' 或y',称之为f的导函数,简称为导数.  &nbs

因式分解:x4次方-2x²y²+y4次方

原式=(x²-y²)²=(x+y)²(x-y)²

曲线y=2x4上的点到直线y=-x-1的距离的最小值为(  )

曲线y=2x4上一点到直线y=-x-1的距离的最小值可转化为曲线与直线平行的切线和直线的距离y′=8x3令8x3=-1,解得x=-12.∴y=2×(−12)4=18.∴切点A(-12,18).y−18

1分解因式:2x4-x3-13x2-15=?2.分解因式:x5+x4+x3+x2+x+1=?3分解因式:x4-4x2+6

一式无法分解二式(x+1)*(x^2+x+1)*(x^2-x+1)三式无法分解

有这样一道题,计算(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2的值,其中x=0.25,y=-1;

(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2=2x4-4x3y-x2y2-2x4+4x3y+2y3+x2y2=2y3,因为化简的结果中不含x,所以原式的值与x值无关.

求下列函数的定义域1.y=x²+x2.y=2-x分之2+x3.y=√3-2x4.y=√2+3分之1过程请完整.

1、实数2、X不等于03、X<=1.54、题目有问题,是2+3分之1X吗,那答案就是X>=-6

函数y=2^(x+2)-3X4^x在【-1,0】上的最大值和最小值为多少?

y=4*2^x-3*(2^x)²x∈[-1,0]令2^x=t,则t∈[1/2,1]y=-3t²+4t,t∈[1/2,1]画图,函数y=-3t²+4t的图象是开口向下,对称

解方程1- 2x-56 = 3-x4

1-2x-56=3-x4-2x+4x=3-1+562x=58x=58/2

已知x=2,y=-3,求(x4次方-y4次方)除以x+y分之x平方+y平方的值__-----要过程

(x^4-y^4)÷(x^2+y^2)/(x+y)=(x^2-y^2)(x^2+y^2)÷(x^2+y^2)/(x+y)=(x^2-y^2)(x^2+y^2)*(x+y)/(x^2+y^2)=(x^2