y=1 xln(1-x),x=o的间断点类型
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:46:32
设斜渐近线为y=ax+ba=lim[x→∞]y/x=lim[x→∞]ln(e+1/x)=1b=lim[x→∞][xln(e+1/x)-ax]=lim[x→∞][xln(e+1/x)-x]=lim[x→
你的题目没有问题吧?如果要关于原点对称,那么定义域肯定也是关于原点对称的,这题的定义域是[-1,∞].如果要关于Y轴对称,那和原点对称一样,定义域在关于原点对称.如果要关于y=x对称,则定义域和值域要
答:∫ xln(x∧2+1)dx=(1/2) ∫ ln(x^2+1) d(x^2+1)=(1/2)*(x^2+1)*[ln(x^2+1)-1]+C再问:���˵
∫xln(x+1)dx=∫ln(x+1)d(1/2*x^2)=1/2×x^2×ln(x+1)-1/2×∫x^2dln(x+1)=1/2×x^2×ln(x+1)-1/2×∫x^2/(x+1)dx=1/2
y=x(lnx)^3y'=x'(lnx)^3+x*[(lnx)^3]'=(lnx)^3+x*3(lnx)^2*(lnx)'=(lnx)^3+3x(lnx)^2*1/x=(lnx)^3+3(lnx)^2
不对吧是不是f(x)=xln[√(x^2+1)-x]?f(-x)=-xln[√(x^2+1)+x]√(x^2+1)+x=[√(x^2+1)+x][√(x^2+1)-x]/[√(x^2+1)-x]=(x
【(lnx-1)/(lnx²)】'=[1/lnx-1/(lnx)²]'=[(lnx)^(-1)-(lnx)^(-2)]'=(-1/x)(lnx)^(-2)+(1/x)2(lnx)^
F’(X)=1×ln(1+X)+X×1/(1+X)-a=ln(1+X)+X/1+X-a
求导函数,可得f'(x)=ln(ex+1)-xex+1=1ex+1[exln(ex+1)+ln(ex+1)-lnex]又因为当x∈[-t,t]时,ex+1>1>0,又因为ln(ex+1)-lnex>0
x/Sqrt[1+x^2]+ln(x+Sqrt[1+x^2])
这个题蛮简单的嘛你看下数学课本上的例题啊!任意x这个要分范围来界定比如:x>0;x=0;X再问:那你可以把x
那个符号用a表示了哈(1)az/ax=y^2+3x^2yaz/ay=2xy+x^3a^2z/ax^2=6xya^2z/(axay)=a^2z/(ayax)=2y+3x^2a^2/ay^2=2x(2)a
z=x^4+3x²y+y³∂z/∂x=4x³+6xy∂z/∂y=3x²+3y²∂²
题目不完整.缺x趋向?
此题用到的是原函数的一阶导数就是切线方程的斜率.设所求切线L方程为:y=kx+b,对函数y求导有:y'=lnx+1∴切线方程的斜率为:k=lnx+1,又∵直线L在x=1处与函数y=xlnx相切∴直线L
y=2/e求渐近线的方法一般都是求极限.在本题中那当然是算x趋于无穷大时y的值了.将函数的左右两边都加上底数e,则右边就可以去掉对数运算,变成(e+1/e)的x次方.下面就是求它的极限问题了.代换t=
f(x)=1+xln[x+√(x^2+1)]-√(x^2+1)f'(x)=ln[x+√(x^2+1)]+x/√(x^2+1)-x/√(x^2+1)=ln[x+√(x^2+1)]f'(-x)=ln[-x
lny=xln(x/x+1)=xlnx-xln(x+1)两边同时对x,求导y'/y=lnx+1-ln(x+1)-x/(x+1)y'=y*(lnx+1-ln(x+1)-x/(x+1))y'=(x/x+1
二阶偏导数有四个Z''xx=(lin(x+y)+x/(x+y))'=1/(x+y)+y/(x+y)^2Z''yy=(x/(x+y))'=-x/(x+y)^2Z''yx=Z''xy=(x/(x+y))'
y=xln(e+1/x),函数定义域:x>-1/e,x≠0,显然取等号就是函数的两条件渐近线方程;当x趋于无穷大时,lim(y/x)=lim[ln(e+1/x)]=ln[lim(e+1/x)]=lne