y=1 2cos(3x 4 π)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:05:25
y=1 2cos(3x 4 π)
函数y=cos(x2−π3

∵令x2−π3∈[-π+2kπ,2kπ],(k∈Z)可得x∈[-4π3+4kπ,2π3+4kπ],(k∈Z)∴函数y=cos(x2−π3)的单调递增区间是[-4π3+4kπ,2π3+4kπ],(k∈Z

函数y=cos

y=12[1+cos2(x-π12]+12[1-cos2(x+π12]-1=12[cos(2x-π6)-cos(2x+π6)]=sinπ6•sinx=12sinx.T=π.故答案为:π.

已知x-y=1,求代数式x4-xy3-x3y-3x2y+3xy2+y4.

原式=(x4-xy3)+(y4-x3y)+(3xy2-3x2y)=x(x3-y3)+y(y3-x3)+3xy(y-x)=(x3-y3)(x-y)-3xy(x-y)=(x-y)(x3-y3-3xy)=(

若函数y=cos(π/3+φ) (0

这个函数应该是y=cos(πx/3+φ)吧?少了一个x,由πx/3+φ)=kπ,将x=9π/4代入得到φ=-3π/4+kπ,令k=1得φ=π/4,所以函数y=sin(2x-φ)的增区间由不等式-π/2

设函数f(x)=x4-2x2+3,求曲线y=x4-2x2+3在点(2,11)处的切线方程

用点斜式,首先求斜率K,在任意一点斜率K(x)=y‘=4x3-4x当x=2,k=24,所以直线方程就是y-11=24(x-2).

判断下列函数y=cos(x+π/3)cos(x-π/3)的奇偶性

用-x代入可得左边括号为-x+π/3因为cos是偶函数所以左边括号等于π/3-x;右边一个括号里面刚好是-x-π/3同理知道等于x+π/3所以相当于左右两个换了一下顺序所以为偶函数

函数y=3cos(25

由三角函数的周期公式,可得T=2π25=5π,即函数的最小正周期为5π故答案为:5π

函数y=cos(π6−

∵y=cos(π6−x)=cos(x-π6),由2kπ-π≤x-π6≤2kπ,k∈Z得:2kπ-56π≤x≤2kπ+π6,k∈Z.∴原函数的单调递增区间为[2kπ-56π,2kπ+π6](k∈Z).故

求函数y=cosx+cos(x-π3

∵y=cosx+cos(x-π3)=cosx+cosxcosπ3+sinxsinπ3=32cosx+32sinx=3(cosπ6cosx+sinπ6sinx)=3cos(x-π6),∵-1≤cos(x

函数y=cosx+cos(x+π/3)

y=cosx+cos(x+π/3)=cosx+cosxcos(π/3)-sinxsin(π/3)=3cosx/2-√3sinx/2=√3(sin(π/3)cosx-cos(π/3)sinx)=√3si

函数y=cos(12x−π3)

由2kπ-π≤12x-π3≤2kπ,k∈Z,解得4kπ-43π≤x≤4kπ+2π3,k∈Z,因为x∈[-2π,2π],所以函数的单调增区间为:(-43π,23π);故答案为:(-43π,23π).

Sin x-sin y=2/3 cos x-cos y=1/2 求cos(x-y)

Sinx-siny=2/3cosx-cosy=1/2分别平方得(Sinx-siny)^2=(2/3)^2(cosx-cosy)^2=(1/2)^2展开相加得-2cos(x-y)+2=4/9+1/4-2

已知函数y=12cos

y=12cos2x+32sinxcosx+1=14cos2x+34sin2x+54=12sin(2x+π6)+54,y取最大值,只需2x+π6=π2+2kπ(k∈Z),即x=kππ6(k∈Z),∴当函

函数y=cos(3x+π3

由y=cosx的图象先向左平移π3个单位,再把各点的纵坐标不变,横坐标变为原来的13倍,即可得到y=cos(3x+π3)的图象.故答案为:左;π3;缩小;13.

y=cos(x-π/3) y=cos(x-π/3) 求这两个三角函数的奇偶性

y=cos(x-π/3)=cosx*cosπ/3+sinxsinπ/3y=cos(-x-π/3)=cos-x*cosπ/3+sin-xsinπ/3=cosx*cosπ/3-sinxsinπ/3非奇非偶

y=cos(π/3-x)cos[π/2(x-1)]判断奇偶性

f(π/3)=f(-π/3)偶函数!再问:要证明啊这种办法只能用来验证是否是吧。。。。求证明的过程再答:f(a)=cos(π/3-a)cos(π/3+a)f(-a)=cos(π/3+a)cos(π/3

函数y=cos(x-π3

由x-π3∈[2kπ,2kπ+π],可得x∈[π3+2kπ , 4π3+2kπ](k∈Z),∴函数y=cos(x-π3)的单调递减区间是[π3+2kπ , 4π

求曲线y=3x4-4x3+1的拐点及凹凸区间.

y′=12x3-12x2,y″=36x2-24x=12x(3x-2)令y″=0解得,x=0或x=23.所以曲线的拐点为(0,1),(23,1127).当x<0或x>23时,y″>0,则曲线的凹区间为(

) y=cos(x-y)

1.两边求导得:y'=-sin(x-y)(1-y')解得y'=sin(x-y)/[sin(x-y)-1]2.y'=-e^-xy''=e^-xy'"=-e^-x3.y'"=(e^2x)'"(sinx)+